opencv undistortPoints函数介绍和注意(返回数值太小)

本文介绍了OpenCV的undistortPoints函数在单目相机应用中的注意事项,包括观测点坐标形状要求、R参数的使用,以及P矩阵对结果坐标的影响。当P矩阵为空时,返回的坐标值较小,表示归一化坐标,设置P为内参可得到消畸变后的像素坐标。建议在使用时详细阅读官方文档。
摘要由CSDN通过智能技术生成

好几次使用undistortPoints都碰到些障碍,把几个问题记录一下,我都是单目相机用

void cv::undistortPoints(InputArray src,
    OutputArray dst,
    InputArray cameraMatrix,
    InputArray distCoeffs,
    InputArray R = noArray(),
    InputArray P = noArray() )

Python:
dst=cv.undistortPoints(src, cameraMatrix, distCoeffs[, dst[, R[, P]]])
dst=cv.undistortPointsIter(src, cameraMatrix, distCoeffs, R, P, criteria[, dst]

用处:根据相机参数和观测到点坐标位置计算实际坐标位置
参数说明:
在这里插入图片描述

注意问题

1. 观测点的shape,即src的shape是1xNx2或Nx1x2;
2. R参数是用在双目里的,单目里置为空矩阵;
3. P矩阵值为空时,得到的结果的点坐标是相机的归一化坐标 ( x , y ) (x, y) (x,y),这时候数值就会明显很小;设置相机内参会进行以下计算,
u ′ =

`findContours()` 是 OpenCV 中的一个图像处理函数,用于查找图像中的轮廓(contours)。轮廓是图像中连续的边界线,可以用于图像分割、目标检测等方面。 函数原型为: ```python contours, hierarchy = cv.findContours(image, mode, method[, contours[, hierarchy[, offset]]]) ``` 其中参数含义如下: - `image`:输入图像,必须为单通道灰度图像,且为二值化后的图像。 - `mode`:轮廓检索模式,可选值有: - `cv.RETR_EXTERNAL`:只检测最外层轮廓。 - `cv.RETR_LIST`:检测所有轮廓,但不建立轮廓之间的父子关系。 - `cv.RETR_CCOMP`:检测所有轮廓,建立两层轮廓之间的父子关系。 - `cv.RETR_TREE`:检测所有轮廓,建立完整的轮廓层级结构。 - `method`:轮廓逼近方法,可选值有: - `cv.CHAIN_APPROX_NONE`:存储所有边界点。 - `cv.CHAIN_APPROX_SIMPLE`:仅存储水平、垂直、对角线方向的边界点。 - `cv.CHAIN_APPROX_TC89_L1`和`cv.CHAIN_APPROX_TC89_KCOS`:使用 Teo-Kim 算法进行边界点逼近。 - `contours`:输出参数,保存检测到的轮廓。 - `hierarchy`:输出参数,保存轮廓的层级结构。 - `offset`:可选参数,用于轮廓点坐标的偏移。 注意:在 OpenCV 3.x 和 4.x 版本中,`findContours()` 函数返回两个值,而在 OpenCV 2.x 版本中只返回一个值。 示例代码: ```python import cv2 as cv # 读取灰度图像 img = cv.imread("test.jpg", 0) # 二值化处理 ret, thresh = cv.threshold(img, 127, 255, cv.THRESH_BINARY) # 查找轮廓 contours, hierarchy = cv.findContours(thresh, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE) # 绘制轮廓 cv.drawContours(img, contours, -1, (0, 0, 255), 2) # 显示原图和处理结果 cv.imshow("Original Image", img) cv.imshow("Threshold Image", thresh) cv.waitKey(0) ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值