路径规划-快速搜索随机树(Rapid-exploration Random Tree)

本节介绍机器人路径规划领域的一个重要的方法,快速搜索随机树法,这种方法在机器人规划领域,尤其是高维环境(机械臂,飞行器)的规划中,占有重要的位置,是基于采样的规划方法的一种。

一简介:
    快速搜索随机树,就是在环境中随机撒一些点,这些点经过算法运算,最终可以连接起来,变成机器人可以运行的轨迹。 

二算法介绍:

1.基本算法流程

2.算法介绍

x_init---------------------->x_new--------------------------x_rand

 

如图所示,为讲述方便,我们以二维环境为例。

开始:首先在环境中,我们有一个起始点,定义为Xinit, 然后我们在环境中随机撒一个点,得到点x_rand,如果x_rand不在障碍物区域,则连接起x_init和x_rand, 我们得到一条连线L,如果L整个不在障碍物里面,则沿着L,从x_init向x_rand的方向移动一定的距离,得到一个新的点,x_new,则x_init,x_new和他们之间的线段构成了一颗最简单的树.

树的扩展: 在开始的基础上,继续重复,在环境中撒点,得到无障碍物区域的点x_rand,然后在已经存在的树上找一个离x_rand最近的点x_near,连接两个点,如果这条线没有障碍物,则沿着这条线,从x_near到x_rand移动一定的距离,得到新的点,x_new, 该点被添加到已经存在的树上

规划: 重复上述过程,直到目标点(或其附近的点)被添加到树上,这时我们就可以在树上找到一条从起点到目标点的路径

3.算法改进变式

 

三、代码资料

2018-10-29,可采用

https://github.com/zychaoqun/Implementation-of-nonholonomicRRT.git 

代码进行简要基于非完整约束的机器人RRT算法测试。

dsvp是一种双阶段视角规划器,用于通过动态扩展实现快速探索。这个概念可以应用于多个领域,如机器人导航、无人机探索和虚拟现实等。 双阶段视角规划器的核心思想是将视角规划分为两个阶段:扩展阶段和动态阶段。在扩展阶段,规划器通过探索周围环境的不同视角来获得尽可能广泛的信息。它可以快速生成多个视角,并评估它们的价值和可行性,以找到最好的选择。这个阶段的目标是尽可能涵盖整个环境,同时保证视角之间的差异性。 在动态阶段,规划器将利用从扩展阶段获得的信息来制定更具体的策略。它可以根据实时的环境变化,对之前选定的视角进行调整和优化,以适应新的情况。这个阶段的目标是实现高效的探索,尽量避免不必要的重复和盲目的行为。 通过结合扩展阶段的快速探索和动态阶段的实时调整,dsvp可以在限定的时间内快速发现新的信息并做出相应的决策。它具有高效性、灵活性和鲁棒性,可以适用于各种复杂的环境和任务。此外,dsvp还可以与其他算法和技术结合使用,以进一步提升探索和规划的能力。 总的来说,dsvp是一种基于双阶段视角规划快速探索方法,可以在不同领域中应用并获得良好的效果。它为机器人和无人机等系统的导航和探索,以及虚拟现实中的场景展示和用户体验等方面提供了一种强大的规划工具。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值