ORB2单目读代码笔记9--单目初始化中的特征点搜索匹配、搜索候选匹配特征点

Frame 跳转 Track

Track启动追踪线程

void Tracking::Track()
{
    // track包含两部分:估计运动、跟踪局部地图
    
    // mState为tracking的状态,包括 SYSTME_NOT_READY, NO_IMAGE_YET, NOT_INITIALIZED, OK, LOST
    // 如果图像复位过、或者第一次运行,则为NO_IMAGE_YET状态
    if(mState==NO_IMAGES_YET)
    {
        mState = NOT_INITIALIZED;
    }

    // mLastProcessedState 存储了Tracking最新的状态,用于FrameDrawer中的绘制
    mLastProcessedState=mState;

开启线程锁,判断如果状态mState为未初始化,则开始初始化。


    // Get Map Mutex -> Map cannot be changed
    // 地图更新时加锁。保证地图不会发生变化
    // 疑问:这样子会不会影响地图的实时更新?
    // 回答:主要耗时在构造帧中特征点的提取和匹配部分,在那个时候地图是没有被上锁的,有足够的时间更新地图
    unique_lock<mutex> lock(mpMap->mMutexMapUpdate);

    // Step 1:初始化
    if(mState==NOT_INITIALIZED)
    {
        if(mSensor==System::STEREO || mSensor==System::RGBD)
            //双目RGBD相机的初始化共用一个函数
            StereoInitialization();
        else
            //单目初始化
            MonocularInitialization();

Track 跳转 MonocularInitialization

下面是针对单目的初始化函数。

void Tracking::MonocularInitialization()
{

如果初始化器没有创建则创建初始化器。
创建初始化器时,当前帧特征点数目要>100,否则不创建。
若满足100特征点条件,则用当前帧拷贝给初始帧mInitialFrame 和最新帧mLastFrame 。

第一帧的特征点要求100个,比后面的帧要求高,以第一帧做模板分配初始化器的容量,后面的帧就都不会超出容量???(猜测)

    // Step 1 如果单目初始器还没有被创建,则创建。后面如果重新初始化时会清掉这个
    if(!mpInitializer)
    {
        // Set Reference Frame
        // 单目初始帧的特征点数必须大于100
        if(mCurrentFrame.mvKeys.size()>100)
        {
            // 初始化需要两帧,分别是mInitialFrame,mCurrentFrame
            mInitialFrame = Frame(mCurrentFrame);
            // 用当前帧更新上一帧
            mLastFrame = Frame(mCurrentFrame);

mvbPrevMatched存储当前帧特征点信息。

            // mvbPrevMatched  记录"上一帧"所有特征点
            mvbPrevMatched.resize(mCurrentFrame.mvKeysUn.size());
            for(size_t i=0; i<mCurrentFrame.mvKeysUn.size(); i++)
                mvbPrevMatched[i]=mCurrentFrame.mvKeysUn[i].pt;

将之前的初始化器删除,创建一个新的初始化器。

            // 删除前判断一下,来避免出现段错误。不过在这里是多余的判断
            // 不过在这里是多余的判断,因为前面已经判断过了
            if(mpInitializer)
                delete mpInitializer;

            // 由当前帧构造初始器 sigma:1.0 iterations:200
            mpInitializer =  new Initializer(mCurrentFrame,1.0,200);

            // 初始化为-1 表示没有任何匹配。这里面存储的是匹配的点的id
            fill(mvIniMatches.begin(),mvIniMatches.end(),-1);

            return;
        }
    }

如果初始化器已被创建,判断如果当前帧特征点数小于100,则删除这个初始化器。

1.C++中的static_cast执行非多态的转换,用于代替C中通常的转换操作。
如:i = static_cast<int>(f);将f强制转换成int类型。
2.C++ fill函数的作用是赋初始值
如:int a[5]; fill(a,a+5,2);
意思是:a[0]~a[5]赋初值2。

    else    //如果单目初始化器已经被创建
    {
        // Try to initialize
        // Step 2 如果当前帧特征点数太少(不超过100),则重新构造初始器
        // NOTICE 只有连续两帧的特征点个数都大于100时,才能继续进行初始化过程
        if((int)mCurrentFrame.mvKeys.size()<=100)
        {
            delete mpInitializer;
            mpInitializer = static_cast<Initializer*>(NULL);
            fill(mvIniMatches.begin(),mvIniMatches.end(),-1);
            return;
        }

创建匹配器matcher,调用初始化时的匹配函数SearchForInitialization对初始帧和当前帧特征匹配。
如果匹配结果还是<100,删除初始化器。

        // Find correspondences
        // Step 3 在mInitialFrame与mCurrentFrame中找匹配的特征点对
        ORBmatcher matcher(
            0.9,        //最佳的和次佳特征点评分的比值阈值,这里是比较宽松的,跟踪时一般是0.7
            true);      //检查特征点的方向

        // 对 mInitialFrame,mCurrentFrame 进行特征点匹配
        // mvbPrevMatched为参考帧的特征点坐标,初始化存储的是mInitialFrame中特征点坐标,匹配后存储的是匹配好的当前帧的特征点坐标
        // mvIniMatches 保存参考帧F1中特征点是否匹配上,index保存是F1对应特征点索引,值保存的是匹配好的F2特征点索引
        int nmatches = matcher.SearchForInitialization(
            mInitialFrame,mCurrentFrame,    //初始化时的参考帧和当前帧
            mvbPrevMatched,                 //在初始化参考帧中提取得到的特征点
            mvIniMatches,                   //保存匹配关系
            100);                           //搜索窗口大小

        // Check if there are enough correspondences
        // Step 4 验证匹配结果,如果初始化的两帧之间的匹配点太少,重新初始化
        if(nmatches<100)
        {
            delete mpInitializer;
            mpInitializer = static_cast<Initializer*>(NULL);
            return;
        }

MonocularInitialization 跳转 SearchForInitialization

参数:

  • F1:初始帧
  • F2:当前帧
  • vbPrevMatched:存储初始帧的匹配到的特征点
  • windowSize:窗口大小
int ORBmatcher::SearchForInitialization(Frame &F1, 
										Frame &F2, 
										vector<cv::Point2f> &vbPrevMatched, 
										vector<int> &vnMatches12, 
										int windowSize)
{

创建容器vnMatches12 用来存储F1(初始帧)与F2(当前帧)的特征点匹配关系,容量为F1的大小,值为-1表示F2中没有对应的匹配。
创建旋转直方图rotHist。有30个长度,每个长度分配500个空间。
创建容器vMatchedDistance存储F1 F2特征点匹配距离。
创建容器vnMatches21存储F2F1的特征点匹配关系(与vnMatches12 成反向匹配)。

   int nmatches=0;
    // F1中特征点和F2中匹配关系,注意是按照F1特征点数目分配空间
    vnMatches12 = vector<int>(F1.mvKeysUn.size(),-1);

    // Step 1 构建旋转直方图,HISTO_LENGTH = 30
    vector<int> rotHist[HISTO_LENGTH];
    for(int i=0;i<HISTO_LENGTH;i++)
    // 每个bin里预分配500个,因为使用的是vector不够的话可以自动扩展容量
        rotHist[i].reserve(500);   

    //! 原作者代码是 const float factor = 1.0f/HISTO_LENGTH; 是错误的,更改为下面代码   
    const float factor = HISTO_LENGTH/360.0f;

    // 匹配点对距离,注意是按照F2特征点数目分配空间
    vector<int> vMatchedDistance(F2.mvKeysUn.size(),INT_MAX);
    // 从帧2到帧1的反向匹配,注意是按照F2特征点数目分配空间
    vector<int> vnMatches21(F2.mvKeysUn.size(),-1);

遍历F1中的特征点,判断如果图像金字塔层数>0则跳过(只关心原始层)。

 	  // 遍历帧1中的所有特征点
    for(size_t i1=0, iend1=F1.mvKeysUn.size(); i1<iend1; i1++)
    {
        cv::KeyPoint kp1 = F1.mvKeysUn[i1];
        int level1 = kp1.octave;
        // 只使用原始图像上提取的特征点
        if(level1>0)
            continue;

GetFeaturesInArea函数里输入F1的特征点信息,F2调用该函数,在F2中以windowSize=100为半径的窗口寻找F2的对应的特征点。

        // Step 2 在半径窗口内搜索当前帧F2中所有的候选匹配特征点 
        // vbPrevMatched 输入的是参考帧 F1的特征点
        // windowSize = 100,输入最大最小金字塔层级 均为0
        vector<size_t> vIndices2 = F2.GetFeaturesInArea(vbPrevMatched[i1].x,vbPrevMatched[i1].y, windowSize,level1,level1);

SearchForInitialization 跳转 GetFeaturesInArea

函数作用:在圆形(实际上是矩形)区域内寻找特征点。

/**
 * @brief 找到在 以x,y为中心,半径为r的圆形内且金字塔层级在[minLevel, maxLevel]的特征点
 * 
 * @param[in] x                     特征点坐标x
 * @param[in] y                     特征点坐标y
 * @param[in] r                     搜索半径 
 * @param[in] minLevel              最小金字塔层级
 * @param[in] maxLevel              最大金字塔层级
 * @return vector<size_t>           返回搜索到的候选匹配点id
 */
vector<size_t> Frame::GetFeaturesInArea(const float &x, const float  &y, const float  &r, const int minLevel, const int maxLevel) const
{
	// 存储搜索结果的vector
    vector<size_t> vIndices;
    vIndices.reserve(N);

在这里插入图片描述

nMinCellX 表示圆左侧边界所在栅格数(列)
nMaxCellX表示圆右侧边界所在栅格数(列)
并分别判断是否超出边界,若超出则返回空vector。
nMinCellYnMaxCellY 类似。

    // Step 1 计算半径为r圆左右上下边界所在的网格列和行的id
    // 查找半径为r的圆左侧边界所在网格列坐标。这个地方有点绕,慢慢理解下:
    // (mnMaxX-mnMinX)/FRAME_GRID_COLS:表示列方向每个网格可以平均分得几个像素(肯定大于1)
    // mfGridElementWidthInv=FRAME_GRID_COLS/(mnMaxX-mnMinX) 是上面倒数,表示每个像素可以均分几个网格列(肯定小于1)
	// (x-mnMinX-r),可以看做是从图像的左边界mnMinX到半径r的圆的左边界区域占的像素列数
	// 两者相乘,就是求出那个半径为r的圆的左侧边界在哪个网格列中
    // 保证nMinCellX 结果大于等于0
    const int nMinCellX = max(0,(int)floor( (x-mnMinX-r)*mfGridElementWidthInv));


	// 如果最终求得的圆的左边界所在的网格列超过了设定了上限,那么就说明计算出错,找不到符合要求的特征点,返回空vector
    if(nMinCellX>=FRAME_GRID_COLS)
        return vIndices;

	// 计算圆所在的右边界网格列索引
    const int nMaxCellX = min((int)FRAME_GRID_COLS-1, (int)ceil((x-mnMinX+r)*mfGridElementWidthInv));
	// 如果计算出的圆右边界所在的网格不合法,说明该特征点不好,直接返回空vector
    if(nMaxCellX<0)
        return vIndices;

	//后面的操作也都是类似的,计算出这个圆上下边界所在的网格行的id
    const int nMinCellY = max(0,(int)floor((y-mnMinY-r)*mfGridElementHeightInv));
    if(nMinCellY>=FRAME_GRID_ROWS)
        return vIndices;

    const int nMaxCellY = min((int)FRAME_GRID_ROWS-1,(int)ceil((y-mnMinY+r)*mfGridElementHeightInv));
    if(nMaxCellY<0)
        return vIndices;

    // 检查需要搜索的图像金字塔层数范围是否符合要求
    //? 疑似bug。(minLevel>0) 后面条件 (maxLevel>=0)肯定成立
    //? 改为 const bool bCheckLevels = (minLevel>=0) || (maxLevel>=0);
    const bool bCheckLevels = (minLevel>0) || (maxLevel>=0);

以栅格为单位遍历圆形区域(实际上是矩形),mGrid中存储的是特征点的序号,在笔记7中提到过:
在这里插入图片描述

    // Step 2 遍历圆形区域内的所有网格,寻找满足条件的候选特征点,并将其index放到输出里
    for(int ix = nMinCellX; ix<=nMaxCellX; ix++)
    {
        for(int iy = nMinCellY; iy<=nMaxCellY; iy++)
        {
            // 获取这个网格内的所有特征点在 Frame::mvKeysUn 中的索引
            const vector<size_t> vCell = mGrid[ix][iy];
			// 如果这个网格中没有特征点,那么跳过这个网格继续下一个
            if(vCell.empty())
                continue;

如果栅格中有特征点,那么根据该特征点序号,把特征点从去畸变特征点容器中取出,
如果特征点的xy坐标都与圆心xy坐标差r以下,那么将该特征点存储到vIndices容器中,最后返回该容器。

            // 如果这个网格中有特征点,那么遍历这个图像网格中所有的特征点
            for(size_t j=0, jend=vCell.size(); j<jend; j++)
            {
				// 根据索引先读取这个特征点 
                const cv::KeyPoint &kpUn = mvKeysUn[vCell[j]];
				// 保证给定的搜索金字塔层级范围合法
                if(bCheckLevels)
                {
					// cv::KeyPoint::octave中表示的是从金字塔的哪一层提取的数据
					// 保证特征点是在金字塔层级minLevel和maxLevel之间,不是的话跳过
                    if(kpUn.octave<minLevel)
                        continue;
                    if(maxLevel>=0)		//? 为何特意又强调?感觉多此一举
                        if(kpUn.octave>maxLevel)
                            continue;
                }               

                // 通过检查,计算候选特征点到圆中心的距离,查看是否是在这个圆形区域之内
                const float distx = kpUn.pt.x-x;
                const float disty = kpUn.pt.y-y;

				// 如果x方向和y方向的距离都在指定的半径之内,存储其index为候选特征点
                if(fabs(distx)<r && fabs(disty)<r)
                    vIndices.push_back(vCell[j]);
            }
        }
    }
    return vIndices;
}

GetFeaturesInArea 结束 返回 SearchForInitialization

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值