深度学习之学习(1-3)Bag of Features (BOF)图像检索算法

一、原理

参考:BOF——Bag-of-Featrures

图像可以视为一种文档对象,图像中不同的局部区域或其特征可看做构成图像的词汇,其中相近的区域或其特征可以视作为一个词。这样,就能够把文本检索及分类的方法用到图像分类及检索中去。

       Bag-of-Features模型仿照文本检索领域的Bag-of-Words方法,把每幅图像描述为一个局部区域/关键点(Patches/Key Points)特征的无序集合。使用某种聚类算法(如K-means)将局部特征进行聚类,每个聚类中心被看作是词典中的一个视觉词汇(Visual Word),相当于文本检索中的词,视觉词汇由聚类中心对应特征形成的码字(code word)来表示(可看当为一种特征量化过程,可理解为:码字表示聚类中心的特征矢量,如该类的平均矢量等)。所有视觉词汇形成一个视觉词典(Visual Vocabulary),对应一个码书(code book)(可理解为:码书是所有聚类中心特征矢量的集合),即码字的集合,词典中所含词的个数反映了词典的大小。

      图像中的每个特征都将被映射到视觉词典的某个词上,这种映射可以通过计算特征间的距离去实现,然后统计每个视觉词的出现次数或频率,图像可描述为一个维数相同的直方图向量,即Bag-of-Features,如下图所示,可用直方图向量来表示或表达图像:

由上图可知,对同一词典,不同图像得到的直方图不同,因此可以用直方图向量来表示图像。

视觉词汇计算示意图:

理解:

1)视觉词汇的确定:

    计算训练图像中所有图像的关键点和描述,然后在特征空间对关键点聚类,生成类心,每个类心为一个视觉词汇,类心的数目即视觉词典中视觉词汇的个数(训练和聚类过程与图像库中图像的种类无关,只是为了得到一个能表述所有图像特征的视觉词典,该过程类似文档分类中,对相同或相似词汇进行合并,得到一个单词字典)。

2)视觉词汇个数的影响:

    视觉词汇的个数即视觉词典的大小,词典大小的选择也是问题,词典过大,单词缺乏一般性,对噪声敏感,计算量大,图象直方图向量的维数高;词典太小,单词区分性能差,对相似的目标特征无法表示。

3)词汇个数的确定问题:
    使用k-means聚类,除了其K和初始聚类中心选择的问题外,对于海量数据,输入矩阵的巨大将使得内存溢出及效率低下。有方法是在海量图片中抽取部分训练集分类,使用朴素贝叶斯分类的方法对图库中其余图片进行自动分类。另外,由于图片爬虫在不断更新后台图像集,重新聚类的代价显而易见。

二、算法步骤:

 

 

2.1、字典学习训练(train a codebook)

首先我们构造一个字典(也称visual vocabulary),方法如下:

1、特征提取(对所有的训练图像提取SIFT特征):利用SIFT等局部描述子(SIFT方法最为常用,OpponentSIFT在各类SIFT改进方式综合表现最为优秀)提取图像的特征点,这个过程一般会生成非常多的特征点。
在这里插入图片描述

2、特征聚类:由于一般提取的特征点实在太多(每张训练图片上都会提取到成千上万的特征点),不太适合分析和操作,所以一般会利用K-Means聚类等方法将所以特征点分成K类,这里每个类,我们就称为一个词(codeword/Visual Word),(对提取的所有图的SIFT特征使用kmeans算法得到k个聚类中心

 

K-means聚类算法流程:

  •  随机初始化 K 个聚类中心
  •  重复下述2个步骤直至算法收敛
    • (1)对应每个特征,根据距离关系赋值给某个中心/类别
    • (2)对每个类别,根据其对应的特征集重新计算聚类中心

3、形成字典:所有的类(词codeword/Visual Word)就构成字典(codebook/visual vocabulary)

2.2、图像特征集投影(这个过程也叫Feature Pooling)(量化)

对于每个输入图像的特征,根据视觉词典进行量化,量化的过程是将该特征映射到距离其最接近的视觉单词,并实现计数。这里要注意选择视觉词典的规模。太少:视觉单词无法覆盖所有可能出现的情况;太多:计算量大,容易过拟合。

(1)特征提取:利用SIFT提取每个训练图像中所有的特征点

(2)查找对应词:就是在字典中找每个特征点对应的词

(3)构成图像特征词表:将字典内每个词出现频率构成这个训练图像特征向量(显然是K维向量)(初步的无权BOF(直方图向量))

通过tf-idf对频数表加上权重,生成最终的bof。(因为每个类心对图像的影响不同。比如超市里条形码中的第一位总是6,它对辨别产品毫无作用,因此权重要减小)。

将每张训练图像的SIFT特征通过1.1(2)得到的kmeans模型K个聚类中心进行聚类,将每一张图像SIFT特征分为k个簇,即根据视觉词典进行量化,根据TF-IDF转化成视觉单词(visual words)的频率直方图

在这里插入图片描述


给定输入图像的BOW直方图, 在数据库中查找 k 个最近邻的图像
对于图像分类问题,可以根据这k个近邻图像的分类标签,投票获得分类结果
当训练数据足以表述所有图像的时候,检索/分类效果良好

 在Bag-of-Features方法的基础上,Andrew Zisserman进一步借鉴文本检索中TF-IDF模型(Term Frequency一Inverse Document Frequency)来计算Bag-of-Features特征向量。接下来便可以使用文本搜索引擎中的反向索引技术对图像建立索引,高效的进行图像检索。

说明:

1.TF-IDF是一种用于信息检索的常用加权技术,在文本检索中,用以评估词语对于一个文件数据库中的其中一份文件的重要程度。词语的重要性随着它在文件中出现的频率成正比增加,但同时会随着它在文件数据库中出现的频率成反比下降:

TF的主要思想是:如果某个关键词在一篇文章中出现的频率高,说明该词语能够表征文章的内容,该关键词在其它文章中很少出现,则认为此词语具有很好的类别区分度,对分类有很大的贡献。

IDF的主要思想是:如果文件数据库中包含词语A的文件越少,则IDF越大,则说明词语A具有很好的类别区分能力。
词频(Term Frequency,TF)指的是一个给定的词语在该文件中出现的次数。如:tf = 0.030 ( 3/100 )表示在包括100个词语的文档中, 词语'A'出现了3次。
逆文档频率(Inverse Document Frequency,IDF)是描述了某一个特定词语的普遍重要性,如果某词语在许多文档中都出现过,表明它对文档的区分力不强,则赋予较小的权重;反之亦然。如:idf = 13.287 ( log (10,000,000/1,000) )表示在总的10,000,000个文档中,有1,000个包含词语'A'。最终的TF-IDF权值为词频与逆文档频率的乘积。

2.3、分类:

       现在每张图像我们都可以得到一个K维特征向量(反映了字典各词的出现频率),现在就是传统的分类问题了,最常用的方法是SVM:)

分类过程:对于待测图像,提取局部特征或关键点描述,计算待测图像特征与词典中每个码字(视觉词汇)的特征距离,即将每个特征都将被映射到视觉词典中点的某个词上,统计每个视觉词汇的频率,得到的直方图向量即为待测图像的Bag-of-Features特征;把待测图像特征输入分类器,判定其类别。如下图所示:

三、代码实现

参考 Bag of features 图像特征词典原理及实现_邓程维的博客-CSDN博客

3.1 生成视觉词典

# -*- coding: utf-8 -*-
import pickle
from PCV.imagesearch import vocabulary
from PCV.tools.imtools import get_imlist
from PCV.localdescriptors import sift
##要记得将PCV放置在对应的路径下
#获取图像列表
imlist = get_imlist('D:/Visual_Studio_Code/data/first1000/') ###要记得改成自己的路径
nbr_images = len(imlist)
#获取特征列表
featlist = [imlist[i][:-3]+'sift' for i in range(nbr_images)]
#提取文件夹下图像的sift特征
for i in range(nbr_images):
    sift.process_image(imlist[i], featlist[i])
#生成词汇
voc = vocabulary.Vocabulary('ukbenchtest')
voc.train(featlist, 1000, 10)
#保存词汇
# saving vocabulary
with open(r'D:\Visual_Studio_Code\data\first1000\vocabulary.pkl', 'wb') as f:
    pickle.dump(voc, f)
print ('vocabulary is:', voc.name, voc.nbr_words)

对应1000张图像生成了1000个sift文件,并且生成了视觉词典

3.2 导入数据库

在python\Lib文件夹之下可以看到一个sqlite3的包,说明python3自带数据库包,不需要安装pysqlite库,所以需要更改PCV\imagesearch中的imagesearch.py文件第三行为from sqlite3 import dbapi2 as sqlite
 

# -*- coding: utf-8 -*-
import pickle
from PCV.imagesearch import imagesearch
from PCV.localdescriptors import sift
from sqlite3 import dbapi2 as sqlite
from PCV.tools.imtools import get_imlist
##要记得将PCV放置在对应的路径下
#获取图像列表
imlist = get_imlist('D:/Visual_Studio_Code/data/first1000/')##记得改成自己的路径
nbr_images = len(imlist)
#获取特征列表
featlist = [imlist[i][:-3]+'sift' for i in range(nbr_images)]
# load vocabulary
#载入词汇
with open(r'D:\Visual_Studio_Code\data\first1000\vocabulary.pkl', 'rb') as f:
    voc = pickle.load(f)
#创建索引
indx = imagesearch.Indexer('testImaAdd.db',voc)
indx.create_tables()
# go through all images, project features on vocabulary and insert
#遍历所有的图像,并将它们的特征投影到词汇上
for i in range(nbr_images)[:1000]:
    locs,descr = sift.read_features_from_file(featlist[i])
    indx.add_to_index(imlist[i],descr)
# commit to database
#提交到数据库
indx.db_commit()
con = sqlite.connect('testImaAdd.db')
print (con.execute('select count (filename) from imlist').fetchone())
print (con.execute('select * from imlist').fetchone())

运行后发现在代码文件夹之下生成了一个数据库文件
在这里插入图片描述

3.3 测试

# -*- coding: utf-8 -*-
import pickle
from PCV.localdescriptors import sift
from PCV.imagesearch import imagesearch
from PCV.geometry import homography
from PCV.tools.imtools import get_imlist

# load image list and vocabulary
#载入图像列表
imlist = get_imlist('first1000/')
nbr_images = len(imlist)
#载入特征列表
featlist = [imlist[i][:-3]+'sift' for i in range(nbr_images)]

#载入词汇
with open('first1000/vocabulary.pkl', 'rb') as f:
    voc = pickle.load(f)

src = imagesearch.Searcher('testImaAdd.db',voc)

# index of query image and number of results to return
#查询图像索引和查询返回的图像数
q_ind = 0
nbr_results = 20

# regular query
# 常规查询(按欧式距离对结果排序)
res_reg = [w[1] for w in src.query(imlist[q_ind])[:nbr_results]]
print ('top matches (regular):', res_reg)

# load image features for query image
#载入查询图像特征
q_locs,q_descr = sift.read_features_from_file(featlist[q_ind])
fp = homography.make_homog(q_locs[:,:2].T)

# RANSAC model for homography fitting
#用单应性进行拟合建立RANSAC模型
model = homography.RansacModel()
rank = {}

# load image features for result
#载入候选图像的特征
for ndx in res_reg[1:]:
    locs,descr = sift.read_features_from_file(featlist[ndx])  # because 'ndx' is a rowid of the DB that starts at 1
    # get matches
    matches = sift.match(q_descr,descr)
    ind = matches.nonzero()[0]
    ind2 = matches[ind]
    tp = homography.make_homog(locs[:,:2].T)
    # compute homography, count inliers. if not enough matches return empty list
    try:
        H,inliers = homography.H_from_ransac(fp[:,ind],tp[:,ind2],model,match_theshold=4)
    except:
        inliers = []
    # store inlier count
    rank[ndx] = len(inliers)

# sort dictionary to get the most inliers first
sorted_rank = sorted(rank.items(), key=lambda t: t[1], reverse=True)
res_geom = [res_reg[0]]+[s[0] for s in sorted_rank]
print ('top matches (homography):', res_geom)
# 显示查询结果
imagesearch.plot_results(src,res_reg[:8]) #常规查询
imagesearch.plot_results(src,res_geom[:8]) #重排后的结果

这里主要是对比两种查询方式:

  1. 常规查询
  2. 用单应性进行拟合建立RANSAC模型

在这一实验下两种方式的结果一致,都成功找到了和第一张图片内容一个类型的数据集:
在这里插入图片描述在这里插入图片描述

四、特征袋分类的举例说明


对于一个的静态手势,可以看作是由多个视觉单词组成。例如需要对1、 2这两个不同的静态手势进行分类。那么首先需要知道1这个手势是由哪些单词组成,2这个手势由哪些单词组成,而这些单词用的是英文单词还是中文单词,这就需要构建视觉词典。构建完视觉词典后我们就开始对1这个这手势进行查字典,设字典只有26个字母,手势1一查1个O、1个N、一个E。手势2一查1个T、1个W、1个O。好的,现在我有两个类在这了。假如你搞一个手势和1比较相似的手势,我就按字母个数分布与哪个相似这个标准来分类判断。比如搞个手势由1个O、1个N、一个T组成,你看,有两个单词和1完全吻合,一个单词和2完全吻合,那肯定和1比较像。我就判断这个手势是手势1。
 

五、BoF图像分类问题也存在问题

(1)SIFT局部描述子能较好的描述图像纹理信息(描述方向梯度),但是也有可能造成其他方面信息的丢失,所以一般解决方法是利用多描述子混合的思路。

(2)这种一个特征点对应于一个词的方法显然忽略图像空间上下文(Spatial Context Modeling),这很容易造成词语义的模糊,所以我们需要构建空间结构,更好的Feature Pooling :)

       最为成功的尝试就是SPM(Spatial Pyramid Matching 空间金字塔匹配),这个方法就是将图像分成多个尺度小块,这里图像每个尺度内的小分块都会得到一个特征词表,所以特征词表串联起来就得到整个图像特征词表,这样做好处是保留了图像空间信息,另外一种思路是在方向梯度空间内操作。

      另一种方法是引入词组(phrases),在由词(low-level)到主题(high-level)中引入中间层(mid-level),比如LLC引入特征点的位置约束。

       下面这种GPP的方法也很类似,其将特征点周围最近的K个特征点共同组成了一个词组(Phrase),此时整个Feature Pooling过程变为word-phrase-theme

        在BoF图像分类问题上,这方面(Better coding + pooling)的研究是重点,上面关于SPM和LLC,我只是简要说了一些目的和原理,不过网上有很多关于SPM及稀疏编码的文章可以参考,特别是这篇http://blog.csdn.net/jwh_bupt/article/details/9837555,转载也挺多的。

(3)图像中一般都存在同主题无关的内容,会影响分类的结果,改进方法是检测兴趣区域(detection of regions-of-interest(ROI))并给不同的权重。

在这里插入图片描述

ORB-SLAM中的词袋树

六、拓展

1. 直方图相似性度量

    每个图像可以用直方图向量来表示,两幅图像是否相同或相似,以及它们的相似程度,可以用直方图相似性度量函数来确定,度量函数有多种,可以选择不同的核函数来表示,如:线型核,塌方距离测度核,直方图交叉核(The Pyramid Match Kernel)等的选择。

2.空间信息
   将图像表示成一个无序局部特征集的特征包方法,丢掉了所有的关于空间特征布局的信息,在描述性上具有一定的有限性。为此, Schmid[2]提出了基于空间金字塔的Bag-of-Features(Spatial Pyramid Matching)。

3.用分量差进行图像描述

   Jégou[7]提出VLAD(vector of locally aggregated descriptors),其方法是如同BOF先建立出含有k个visual word的codebook,而不同于BOF将一个local descriptor用NN分类到最近的visual word中,VLAD所采用的是计算出local descriptor和每个visual word(ci)在每个分量上的差距,将每个分量的差距形成一个新的向量来代表图片。

七、资源

Two bag-of-words classifiers(Matlab)
Code for Vocabulary tree based image search(C++)
matlab+VC 实现Bag of features 
Bag of Words/Bag of Features的Matlab源码
一个用BoW|Pyramid BoW+SVM进行图像分类的Matlab Demo
Bag-Of-Words中K-Means聚类的效率优化
aMMAI BLOG
Visual Wordsを用いた類似画像検索
bayonを使って画像からbag-of-keypointsを求める

Paper

1.Bag of words models(.ppt )  byLi Fei-Fei(Stanford)

2.  Spatial Pyramid Matching:

3. Improving bag-of-features for large scale image search

  • Improving bag-of-features for large scale image search.
    Hervé Jégou, Matthijs Douze, Cordelia Schmid.International Journal of Computer Vision, Volume 87, Number 3 - feb 2010.[pdf]
    Demo:bigimbaz image search engine 

4. Hamming embedding and weak geometric consistency for large scale image search. Hervé Jégou, Matthijs Douze, Cordelia Schmid
European Conference on Computer Vision - oct 2008.[pdf][slides]

5. Bag-of-colors for improved image search. Christian Wengert, Matthijs Douze, Hervé Jégou,ACM Multimedia (2011).[pdf]

6. Video Google: A Text Retrieval Approach to Object Matching in Videos  .  J. Sivic, A. Zisserman.  IEEE International Conference on Computer Vision, Volume 2, page 1470--1477, 2003.[PDF ]

7.Aggregating local descriptors into a compact image representation. Hervé Jégou, Matthijs Douze, Cordelia Schmid, Patrick Pérez. IEEE Conference on Computer Vision & Pattern Recognition - jun 2010. [pdf][sildes]

浅析 Bag of Feature - 大白话AI - 博客园

Bag of Features (BOF)图像检索算法_loadstar_kun的博客-CSDN博客_bof模型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值