姿态运动学,轴角法

1.轴角法:
一个坐标系相对于另一个坐标系之间的姿态就可以用个一个轴(单位向量)和一个角来表示了,轴角法表示。可以用一个3×1的矢量来表示,矢量的大小就是旋转角度,方向就是旋转轴,这是旋转矢量法表示。二者可以等效。

这就是最简单的表示方法:轴角法。

这种表示方式一定明明白白的理解,因为它是后续的基础。

轴角法有两个优点,两个硬伤。

优点一:同轴的两次旋转可以直接相加来等效为一次旋转。

优点二:定义简单,相对直观。

硬伤一:一个xyz坐标系和另一个xyz`,轴角法表示是唯一的吗(角度规定在0-180)?答案是否定的,因为当旋转角度是0的时候,旋转轴可以是任意的,等效为求解 0×x=0 这个方程;也就是说这时候无解了。但是在应用中,一一对应很重要,这也就暴露出了轴角法表示的最致命的问题。

硬伤二:两次连续的旋转怎样合成呢?或者说是两个旋转如何做差呢?答案是没办法,除非借助其他表示方法。
事实上,有人已经证明了,虽然旋转的自由度是三,但是仅仅用三个数表示必然会出问题(我忘了原话怎么说的了。。。)。

那需要几个呢?最少四个数。

好了,应用最广泛的,逼格最高的四元数来了。

四元数和轴角法什么关系呢?是如何解决轴角法两大硬伤的呢??

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值