罗德里格斯公式推导(轴角与旋转矩阵的关系)以及四元数与旋转向量、旋转矩阵、欧拉角之间的转换关系

罗德里格斯公式推导(轴角与旋转矩阵的关系)

  1. 意义:罗德里格斯公式表示旋转向量到旋转矩阵之间爱你的转换关系
  2. 旋转向量:一个向量,方向与旋转轴一致,长度等于旋转角度
  3. 空间中任意旋转都可以用一个旋转轴和一个旋转角来刻画
    图片1图片1
    图片2在这里插入图片描述
    图片3在这里插入图片描述
    图片4在这里插入图片描述
    【参考】
    链接: https://blog.csdn.net/renhaofan/article/details/103706544.

旋转矩阵、轴角、四元数q、欧拉角之间的转换

旋转向量和旋转矩阵
在这里插入图片描述
四元数和旋转向量
在这里插入图片描述
四元数和旋转矩阵
在这里插入图片描述
四元数与欧拉角
在这里插入图片描述

### 使用 Rodrigues 旋转公式计算旋转矩阵并应用 为了实现旋转向量旋转矩阵转换以及对方向向量的应用,具体方法如下: #### 计算旋转矩阵 给定一个旋转向量 \(\mathbf{r} = [\theta r_x, \theta r_y, \theta r_z]^T\),其中 \(r_x, r_y, r_z\) 表示单位向量的方向分量,\(\theta\) 表示绕该轴线旋转的角度(弧度制)。根据罗德里格斯公式[^1],可得到相应的旋转矩阵 \(R\) 如下所示: \[ R = I + sin(\theta)K + (1-cos(\theta))K^2 \] 这里, - \(I\) 是3×3单位矩阵; - \(K\) 是反对称矩阵形式表示的旋转向量,定义为: \[ K=\begin{bmatrix} 0 & -r_z & r_y \\ r_z & 0 & -r_x\\ -r_y& r_x & 0 \end{bmatrix}\] 对于 OpenCV 用户来说,可以直接调用 `cv::Rodrigues` 函数来完成这一操作。下面是一个简单的 Python 实现例子。 ```python import numpy as np import cv2 def rodrigues_to_rotation_matrix(rvec): """Converts a rotation vector to a rotation matrix using opencv's Rodrigues function.""" theta = np.linalg.norm(rvec) if theta < 1e-8: return np.eye(3) rvec_normalized = rvec / theta R, _ = cv2.Rodrigues(rvec_normalized * theta) return R # Example usage with an arbitrary axis-angle representation. rotation_vector = np.array([np.pi/4, np.pi/6, np.pi/3]) # Rotation around some axis by certain angle in radians. # Convert the rotation vector into its corresponding rotation matrix form. rot_mat = rodrigues_to_rotation_matrix(rotation_vector) print("Rotation Matrix:\n", rot_mat) ``` 这段代码展示了如何利用OpenCV库中的`cv::Rodrigues()`函数将任意给定的旋转向量转换成对应的旋转矩阵[^2]。 #### 应用于方向向量变换 一旦获得了旋转矩阵之后,就可以很容易地将其作用于任何三维空间内的方向向量上。假设有一个初始方向向量 \(\mathbf{v}_i=(x_i,y_i,z_i)\),那么经过上述获得的旋转矩阵\(R\)后的新的方向向量\(\mathbf{v}'=R*\mathbf{v}_i\)可以通过简单矩阵乘法运算得出。 继续上面的例子,在获取到了旋转矩阵后,我们可以这样处理一个特定的方向向量: ```python direction_vector_initial = np.array([[1], [0], [0]]) # Initial direction vector along X-axis. transformed_direction_vector = np.dot(rot_mat, direction_vector_initial).reshape(-1,) print("Transformed Direction Vector:", transformed_direction_vector.tolist()) ``` 此部分实现了通过已知旋转矩阵对指定方向向量实施几何变换的过程[^4]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值