有关旋转矩的证明

本文分别探讨了旋转矩阵的性质,证明了RTR=I且det(R)=±1。同时,介绍了四元数的概念,并定义了四元数的加法与乘法规则。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 设有旋转矩阵 R R R,证明 R T R = I R^TR=I RTR=I d e t R = ± 1 det R = \pm1 detR=±1

证明:假设有两组正交集 ( e 1 , e 2 , e 3 ) (e_1, e_2, e_3) (e1,e2,e3) ( e 1 ′ , e 2 ′ , e 3 ′ ) (e'_1, e'_2, e'_3) (e1,e2,e3),以及在这两组正交集下的坐标 a = ( a 1 , a 2 , a 3 ) a = (a_1, a_2, a_3) a=(a1,a2,a3) a ′ = ( a 1 ′ , a 2 ′ , a 3 ′ ) a' = (a'_1, a'_2, a'_3) a=(a1,a2,a3);

根据坐标系的定义:

[ e 1 , e 2 , e 3 ] [ a 1 a 2 a 3 ] = [ e 1 ′ , e 2 ′ , e 3 ′ ] [ a 1 ′ a 2 ′ a 3 ′ ] [e_1, e_2, e_3]\left[\begin{array}{c}a_1\\ a_2\\ a_3\\ \end{array}\right] = [e'_1, e'_2, e'_3]\left[\begin{array}{c}a'_1\\ a'_2\\ a'_3\\ \end{array}\right] [e1,e2,e3]a1a2a3=[e1,e2,e3]a1a2a3

[ a 1 a 2 a 3 ] = [ e 1 T e 1 ′ e 1 T e 2 ′ e 1 T e 3 ′ e 2 T e 1 ′ e 2 T e 2 ′ e 2 T e 3 ′ e 3 T e 1 ′ e 3 T

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值