1. 设有旋转矩阵 R R R,证明 R T R = I R^TR=I RTR=I且 d e t R = ± 1 det R = \pm1 detR=±1
证明:假设有两组正交集 ( e 1 , e 2 , e 3 ) (e_1, e_2, e_3) (e1,e2,e3)与 ( e 1 ′ , e 2 ′ , e 3 ′ ) (e'_1, e'_2, e'_3) (e1′,e2′,e3′),以及在这两组正交集下的坐标 a = ( a 1 , a 2 , a 3 ) a = (a_1, a_2, a_3) a=(a1,a2,a3)与 a ′ = ( a 1 ′ , a 2 ′ , a 3 ′ ) a' = (a'_1, a'_2, a'_3) a′=(a1′,a2′,a3′);
根据坐标系的定义:
[ e 1 , e 2 , e 3 ] [ a 1 a 2 a 3 ] = [ e 1 ′ , e 2 ′ , e 3 ′ ] [ a 1 ′ a 2 ′ a 3 ′ ] [e_1, e_2, e_3]\left[\begin{array}{c}a_1\\ a_2\\ a_3\\ \end{array}\right] = [e'_1, e'_2, e'_3]\left[\begin{array}{c}a'_1\\ a'_2\\ a'_3\\ \end{array}\right] [e1,e2,e3]⎣⎡a1a2a3⎦⎤=[e1′,e2′,e3′]⎣⎡a1′a2′a3′⎦⎤
则
[ a 1 a 2 a 3 ] = [ e 1 T e 1 ′ e 1 T e 2 ′ e 1 T e 3 ′ e 2 T e 1 ′ e 2 T e 2 ′ e 2 T e 3 ′ e 3 T e 1 ′ e 3 T