数学分析第五课(关于实数的4个定理)

We will introduce four theorems in R \mathbb{R} R, and they are such
obvious that you even don’t realise that they need proofs.

Theorem 1: If x ∈ R , y ∈ R x\in \mathbb{R}, y\in \mathbb{R} xR,yR and x > 0 x>0 x>0, then
there is a positive integer n n n such that n x > y . nx>y. nx>y.

Proof. Let A A A be the set of all n x nx nx, If this theorem were false,
then y y y would be an upper bound of A A A. According to the least greatest
property of R \mathbb{R} R, we have that there exists an α \alpha α such
that α = sup ⁡ A . \alpha=\sup{A}. α=supA. Since x > 0 x>0 x>0, α − x < α \alpha-x<\alpha αx<α, and α − x \alpha-x αx
is not an upper bound of A A A. Hence α − x < m x \alpha-x<mx αx<mx for some positive
integer m m m. However, α < ( m + 1 ) x ∈ A \alpha<(m+1)x\in A α<(m+1)xA, which is imposible, since
α \alpha α is an upper bound of A A A.
Theorem 2: If x ∈ R , y ∈ R x\in \mathbb{R}, y\in \mathbb{R} xR,yR, and x < y x<y x<y, then
there exists a p ∈ Q p\in Q pQ such that x < p < y . x<p<y. x<p<y.

Proof. We give a proof that is bottom up. In order to find a
p ∈ Q p\in \mathbb{Q} pQ that satisfies x < p < y x<p<y x<p<y, we need to find a
p = m n ∈ Q , m , n ∈ Z p=\frac{m}{n}\in \mathbb{Q}, m,n\in \mathbb{Z} p=nmQ,m,nZ. Let n > 0 n>0 n>0(Without loss
of generality), then we have x < m n < y → n x < m < n y . x<\frac{m}{n}<y \rightarrow nx<m<ny. x<nm<ynx<m<ny.

If there always exists an integer between n x nx nx and n y ny ny, then
n y − n x > 1 → n ( y − x ) > 1 ny-nx>1\rightarrow n(y-x)>1 nynx>1n(yx)>1. According theorem 1 and y − x > 0 y-x>0 yx>0, we are
able to find some integer n > 0 n>0 n>0 such that n ( y − x ) > 1 n(y-x)>1 n(yx)>1. This proveds
theorem 2.
Theorem 3: For every real x > 0 x>0 x>0 and every integer n > 0 n>0 n>0 there is one
and only one positive real y y y such that y n = x . y^n=x. yn=x. Proof.

  • Since 0 < y 1 < y 2 0<y_1<y_2 0<y1<y2 implies y 1 n < y 2 n y_1^n<y_2^n y1n<y2n, there is at most one such
    y y y that satisfies y n = x y^n=x yn=x if it exists.

  • Let E E E be the set consisting of all positive real numbers t t t such
    that t n < x . t^n<x. tn<x. We are going to prove that E E E is not empty and
    bounded uppon. Let t = x / ( 1 + x ) < x t=x/(1+x)<x t=x/(1+x)<x.Hence
    0 ⩽ t < 1 0\leqslant t<1 0t<1, t n < t < x t^n<t<x tn<t<x,and E E E is not empty. Let t > 1 + x t>1+x t>1+x. Thus
    t 2 > t > x t^2>t>x t2>t>x indicates that t ∉ E t\notin E t/E, which means that t = 1 + x t=1+x t=1+x is an
    upper bound of E E E. Let y = sup ⁡ E . y=\sup{E}. y=supE.

  • We claim that y n = x y^n=x yn=x. The following content is about the proof of
    this claim. We prove this claim by two steps. Firstly, assume
    y n < x y^n<x yn<x. we will find that there exits t > y t>y t>y, t ∈ E t\in E tE. Secondly,
    assume y n > x y^n>x yn>x. we can also find that there exist t < y t<y t<y,
    t ∉ E t\notin E t/E. These two different settings indicate that y y y cannot
    be the upper bound of E E E which contradicts these two assumptions.
    Before we dive into the proof, we have to look at a lemma which will
    facilitate us.
    Lemma: b n − a n = ( b − a ) ( b n − 1 + b n − 2 a + ⋯ + a n − 1 ) b^n-a^n=(b-a)(b^{n-1}+b^{n-2}a+\cdots+a^{n-1}) bnan=(ba)(bn1+bn2a++an1) yields
    the inequality b n − a n < ( b − a ) n b n − 1 b^n-a^n<(b-a)nb^{n-1} bnan<(ba)nbn1 when 0 < a < b 0<a<b 0<a<b.
    Why do we need this lemma? We are going to explain it later. First
    thing first, let y n < x y^n<x yn<x. We have to find some t > y t>y t>y such that
    t n < x t^n<x tn<x. It means that t n − y n < x − y n t^n-y^n<x-y^n tnyn<xyn Lemma 1 tells us that
    t n − y n < ( t − y ) n t n − 1 t^n-y^n<(t-y)nt^{n-1} tnyn<(ty)ntn1 This is why we need lemma 1. If we can
    find a t ∈ E t\in E tE satisfies ( t − y ) n t n − 1 < x − y n (t-y)nt^{n-1}<x-y^n (ty)ntn1<xyn ,we prove that y y y
    is not an upper bound of E E E.Without loss generality, let
    t = y + h , 1 > h > 0 t=y+h, 1>h>0 t=y+h,1>h>0. Thus h n ( y + h ) n − 1 < h n ( y + 1 ) n − 1 . hn(y+h)^{n-1}<hn(y+1)^{n-1}. hn(y+h)n1<hn(y+1)n1. In order to
    get h n ( y + 1 ) n − 1 < x − y n hn(y+1)^{n-1}<x-y^n hn(y+1)n1<xyn, we have to set
    h < x − y n n ( y + 1 ) n − 1 . h<\frac{x-y^n}{n(y+1)^{n-1}}. h<n(y+1)n1xyn. Reversely, if
    h < x − y n n ( y + 1 ) n − 1 h<\frac{x-y^n}{n(y+1)^{n-1}} h<n(y+1)n1xyn, then t = y + h ∈ E t=y+h\in E t=y+hE. Hence y y y is not
    an uppper bound of E E E. This contradicts the assumption that
    y = sup ⁡ E y=\sup{E} y=supE. Similarly, we can use the same strategy to prove that
    there exists t < y , t ∉ E t<y, t\notin E t<y,t/E when y n > x y^n>x yn>x. Thus y y y cannot be the
    upper bound of E E E, which contradicts the assumption of y = sup ⁡ E y=\sup{E} y=supE.
    These two steps yield that y n > x y^n>x yn>x or y n < x y^n<x yn<x are not true. Hence,
    y n = x y^n=x yn=x is the only acceptable result.

Theorem 4: If a a a and b b b are positive real numbers and n n n is a
postive integer, then ( a b ) 1 / n = a 1 / n b 1 / n . (ab)^{1/n}=a^{1/n}b^{1/n}. (ab)1/n=a1/nb1/n. Proof. Put
α = a 1 / n , β = b 1 / n \alpha=a^{1/n},\beta=b^{1/n} α=a1/n,β=b1/n. Because multiplication is commutative,
we have that a b = α n β n = ( α β ) n . ab=\alpha^n\beta^n=(\alpha\beta)^n. ab=αnβn=(αβ)n. The uniqueness
assertion of Theorem 3 shows therefore that
( a b ) 1 / n = α β = a 1 / n b 1 / n . (ab)^{1/n}=\alpha\beta=a^{1/n}b^{1/n}. (ab)1/n=αβ=a1/nb1/n.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值