数学分析第七课(复数)

The Complex Field. We firstly introduce the definition of complex
numbers.

Definiton: A complex numbers is an ordered pair ( a , b ) (a,b) (a,b) of real
numbers. ( a , b ) (a,b) (a,b) and ( b , a ) (b,a) (b,a) are regarded as distinct if a ≠ b a\ne b a=b. Let
x = ( a , b ) , y = ( c , d ) x=(a,b),y=(c,d) x=(a,b),y=(c,d) be two complex numbers. We write x = y x=y x=y if and only if
a = c a=c a=c and b = d b=d b=d. We define x + y = ( a + c , b + d ) x y = ( a c − b d , a d + b c ) \left. \begin{aligned} x+y&=(a+c,b+d)\\ xy&=(ac-bd, ad+bc) \end{aligned} \right. x+yxy=(a+c,b+d)=(acbd,ad+bc)

From the definition, we can easily prove that complex numbers is a
field, with ( 0 , 0 ) (0,0) (0,0) and ( 1 , 0 ) (1,0) (1,0) in the role of 0 0 0 and 1 1 1. On the other
hand, we shall also note that real numbers is a subfield of complex
field. You might have noticed that we have defined the complex numbers
without any reference to the square root of − 1 -1 1. It is because that
notation ( a , b ) (a,b) (a,b) is equivalent to a + b i a+bi a+bi.

Definiion: i = ( 0 , 1 ) i=(0,1) i=(0,1)

According to this definition, we have i 2 = ( 0 , 1 ) ( 0 , 1 ) = ( − 1 , 0 ) = − 1 i^2=(0,1)(0,1)=(-1,0)=-1 i2=(0,1)(0,1)=(1,0)=1

a + b i = ( a + 0 ) + ( b , 0 ) ( 0 , 1 ) = ( a , 0 ) + ( 0 , b ) = ( a , b ) a+bi=(a+0)+(b,0)(0,1)=(a,0)+(0,b)=(a,b) a+bi=(a+0)+(b,0)(0,1)=(a,0)+(0,b)=(a,b)

Definition If a , b a,b a,b are real and z = a + b i z=a+bi z=a+bi, then the complex number
z ˉ = a − b i \bar{z}=a-bi zˉ=abi is called the conjugate of z z z. The numbers a a a and b b b
are the real part and the imaginary part of z z z, respectively.

a = R e ( z ) , b = I m ( z ) . a=Re(z), b=Im(z). a=Re(z),b=Im(z).

Cauchy-Schwarz inequality: If ( a 1 , a 2 , ⋯   , a n ) \left( a_1, a_2, \cdots, a_n \right) (a1,a2,,an)
and ( b 1 , b 2 , ⋯   , b n ) \left( b_1, b_2, \cdots, b_n \right) (b1,b2,,bn) are complex numbers, then
∣ ∑ i = 1 n a i b i ˉ ∣ 2 ⩽ ∑ i = 1 n ∣ a i ∣ 2 ∑ i = 1 n ∣ b i ∣ 2 \left|\sum_{i=1}^{n}a_i\bar{b_i}\right|^2\leqslant \sum_{i=1}^{n}|a_i|^2 \sum_{i=1}^{n}|b_i|^2 i=1naibiˉ2i=1nai2i=1nbi2

We omit the proof because it is not instructive. It does not give any
insight of the Cauchy-Schwarz inequality. However, there must be some
reasons why Rudin did it like that, but I cannot figure it out.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值