利用Seurat包入门生物信息学(part2)--引导案例之PBMC聚类

本文是一篇关于使用Seurat包进行单细胞RNA测序数据分析的教程,以10X Genomics的PBMC数据为例,涵盖了从加载数据、预处理、标准化到线性降维和聚类的全过程。主要介绍了如何进行质量控制、选择分析的细胞,以及PCA和主成分的选择。

学习笔记,仅供参考,有错必纠
参考资料:https://satijalab.org/seurat/index.html;
备注:这是我第一次学习的笔记,对此了解更深入之后,会重新整理



Seurat Package

在本教程中,我们将分析10X Genomics公司免费提供的外周血单核细胞(PBMC)数据集,该数据集包含2,700个单细胞在Illumina NextSeq 500上的测序信息. 原始数据指路:Peripheral Blood Mononuclear Cells;

加载包

加载Seurat包及其他需要使用的包.

library(Seurat)
library(dplyr)
library(patchwork)

查看Seurat包的版本信息.

packageVersion("Seurat")
[1] ‘4.1.1’

读取数据

Read10X()方法读取文件,该方法可以便捷的获取由10X genomics提供的稀疏数据矩阵.

Read10X(
  data.dir,
  gene.column = 2,
  cell.column =
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GUI Research Group

谢谢支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值