深度学习学习——transformer用于时间序列预测

相关链接:pytorch1.9 transformer
Time2Vec
为了实现时间嵌入,我们将使用论文 Time2Vec: Learning a Vector Representation of Time [2] 10中描述的方法。文中提出一种“对于时间的模型无关向量表示,叫做Tiem2Vector”. 你可以认为一个该向量表示,就像一层普通的embedding layer一样,可以被添加到神经网络结构来提高一个模型的性能。
这篇论文有两个主要思想:1、作者发现时间的有意义的表示必须包括 周期性和非周期性两个模式 。周期性模式的一个例子是每一年不同季节的天气变化。相反,非周期性模式的一个例子是疾病,患者越老越容易发生。2、时间表示应该 对时间缩放 具有 不变性, 这意味着时间表示不受不同时间增量(例如:天,小时、秒或较长时间范围)的影响。结合周期性和非周期性模式的思想以及时间缩放的不变性,我们通过以下数学定义来表示。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

量化橙同学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值