三维点云处理03-Radius Outlier Remove代码实现

这篇博客介绍了如何利用Open3D库的半径滤波方法RadiusOutlierRemove来处理三维点云数据。通过设定半径范围和最近邻数量阈值,该算法可以有效地移除点云中的离群点。在代码实现部分,首先创建KDTree,然后遍历每个点,查找其半径范围内的最近邻,若最近邻数量小于预设阈值,则将该点标记为离群点并剔除。该方法对于点云数据的预处理和噪声过滤非常有用。
摘要由CSDN通过智能技术生成

三维点云处理03-Radius Outlier Remove代码实现

半径滤波思想
	设定一个固定的半径范围,对每个点在该半径范围内查找最近点,并设定最近点最低数量阈值,
	如果某个点在该半径范围内的最近点的数量小于该最低数量阈值,则认为该点为离群点,去除
代码实现
import os
import numpy as np
import open3d as o3d
from pyntcloud import PyntCloud


def radius_outlier_remove(pcd,dis,k):
	'''
	半径滤波去除
	'''
	#建立KDTree
	pcd_tree = o3d.geometry.KDTreeFlann(pcd)
	
	#获得输入点云的总数
	N = len(pcd.points)
	
	#记录滤波后的点云idxs
	idxs = []
	
	#遍历所有点,保存满足半径滤波条件的点
	for i in range(N):
		#RNN获得最近邻
		[k,idx,_] = pcd_tree.search_radius_vector_3d(pcd.points[i],dis)
		num = len(idx)
		if num >= k:
			idxs.append(i)
	
	points = pcd.points[idxs]
	return points
	
	
def main(point_cloud_filename):
	'''
	主函数:
	输入:点云文件名
	'''
	#从文件中加载点云
	point_cloud_pynt = PyntCloud.from_file(point_cloud_filename)
	point_cloud_o3d = point_cloud_pynt.to_instance("open3d",mesh=False)
	#从点云中获取点
	points = point_cloud_pynt.points

	#调用子函数进行半径滤波,并获得滤波后的点云
	filtered_points = radius_outlier_remove(point_cloud_o3d,dis,k)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值