pure pursuit纯跟踪

本文详细介绍了PurePursuit路径跟踪算法的工作原理及其实现步骤,包括其基于的自行车模型和阿克曼小车模型,以及如何通过计算目标点来调整转向角。讨论了影响性能的因素,并提出了改进措施。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Pure Pursuit是一种几何追踪方法,速度越小,performance越好;

\delta:汽车前轮转角

L:前后轮轴距(车长)

R:转弯半径

将车辆模型简化为自行车模型(这里默认左轮和右轮的旋转是一致的)!!!

bicycle model:

tan\delta =\frac{L}{R }

pure pursuit建立于自行车模型和阿克曼小车模型的基础上,goal point为距离后轴中心最近的点.

1、pure pursuit的公式推导:

\alpha:目标点方向和当前航向角方向夹角;

l_{d}:前视距离;

e_{ld}:横向误差;

\frac{l_{d}}{sin2\alpha }=\frac{R}{sin(\frac{\Pi }{2}-\alpha )}

\frac{l_{_d}}{2sin\alpha cos\alpha }=\frac{R}{cos\alpha }

R = \frac{2l_{_d}}{sin\alpha }   

sin\alpha =\frac{e_{ld}}{l_{d}}

联立R = \frac{2l_{_d}}{sin\alpha }tan\delta =\frac{L}{R }可得:

\delta(t) = tan^{-1}(\frac{2L}{l_{d}^2}e_{ld}(t))

以上就是pure pursuit的相关公式,purepursuit是基于横向误差(cross track error)放大\frac{2L}{l_{d}^2}倍的比例控制器。

2、pure pursuit的实现步骤:

(1)确定车辆自身位置

(2)找到距离当前位置最近的点

(3)寻找目标点G,以车辆后轴为中心,Ld为半径画一个圆弧找到规划路径的交点

(4)转换到车身坐标系下

(5)用pure pursuit计算公式计算到达目标点所需的转向角

3、影响因素

由purepursuit公式可知,影响最大的就是l_{_{d}}l_{_{d}}会影响(steering angle )\delta、进而影响车辆对轨迹的追踪效果;

l_{_d}pure pursuit performance 越好稳定性越差准确性越高
l_{_d}pure pursuit performance 越差稳定性越好准确性越低

 4、改进

l_{_d} 并没有和vehicle的velociety相关,并且(steering angle)\delta并不能无限大无限小;

改进:对l_{_d}和速度关联起来(pure_pursuit的特性是:长的平滑轨迹上越小的前视距离准确度越好),对\delta设定范围;

\delta (t)=tan^{-1}(\frac{2Lsin(\alpha(t))}{l_{d}})

 \delta(t)=tan^{-1}(\frac{2Lsin(\alpha )}{kv_{x}})

l_{_d} = KV_{_x}l_{_d}与V关联起来,V正比于l_{_d}

K越小稳定性越差
K越大Acc越小

5、pure_pursuit的挑战

(1)如何选择一个合适的前视距离?

答:l_{_d} = KV_{_x}

(2)不要刻意的将pure_pursuit针对于某一特定的场景进行调整、因为会出现过拟合现象;

(3)当车辆还没有到预瞄点的时候就切换到下一个目标点,故无法对曲线达到100%的追踪,对于直线的效果很好;

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值