视觉SLAM学习笔记5

Eigen实践

Eigen是一个C++线性代数库,提供了有关矩阵的线性代数运算,解方程等功能

安装

$ sudo apt-get install libeigen3-dev

Eigen特殊之处在于它是一个纯用头文件搭建起来的库,使用时只需引入Eigen的头文件,而不需链接其他库文件,没有.so或.a那样的二进制文件

#include <iostream>
#include <ctime>
using namespace std;
// Eigen 部分
#include <Eigen/Core>
// 稠密矩阵的代数运算(逆,特征值等)
#include <Eigen/Dense>
#define MATRIX_SIZE 50
//本程序演示了 Eigen 基本类型的使用
int main( int argc, char** argv ){
// Eigen 以矩阵为基本数据单元。它是一个模板类。它的前三个参数为:数据类型,行,列
// 声明一个 2*3 的 float 矩阵
Eigen::Matrix<float, 2, 3> matrix_23;
// 同时,Eigen 通过 typedef 提供了许多内置类型,不过底层仍是 Eigen::Matrix
// 例如 Vector3d 实质上是 Eigen::Matrix<double, 3, 1>
Eigen::Vector3d v_3d;
// 还有 Matrix3d 实质上是 Eigen::Matrix<double, 3, 3>
Eigen::Matrix3d matrix_33 = Eigen::Matrix3d::Zero(); //初始化为零
// 如果不确定矩阵大小,可以使用动态大小的矩阵
Eigen::Matrix< double, Eigen::Dynamic, Eigen::Dynamic > matrix_dynamic;
// 更简单的
Eigen::MatrixXd matrix_x;
// 这种类型还有很多,我们不一一列举

// 下面是对矩阵的操作
// 输入数据
matrix_23 << 1, 2, 3, 4, 5, 6;
// 输出
cout << matrix_23 << endl;
// 用()访问矩阵中的元素
for (int i=0; i<1; i++)
for (int j=0; j<2; j++)
cout<<matrix_23(i,j)<<endl;
v_3d << 3, 2, 1;
// 矩阵和向量相乘(实际上仍是矩阵和矩阵)
// 但是在这里你不能混合两种不同类型的矩阵,像这样是错的
// Eigen::Matrix<double, 2, 1> result_wrong_type = matrix_23 * v_3d;
// 应该显式转换
Eigen::Matrix<double, 2, 1> result = matrix_23.cast<double>() * v_3d;
cout << result << endl;
// 同样你不能搞错矩阵的维度
// 试着取消下面的注释,看看会报什么错
// Eigen::Matrix<double, 2, 3> result_wrong_dimension = matrix_23.cast<double>() * v_3d;
// 一些矩阵运算
// 四则运算就不演示了,直接用对应的运算符即可。
matrix_33 = Eigen::Matrix3d::Random();
cout << matrix_33 << endl << endl;
cout << matrix_33.transpose() << endl; //转置
cout << matrix_33.sum() << endl; //各元素和
cout << matrix_33.trace() << endl; //迹
cout << 10*matrix_33 << endl; //数乘
cout << matrix_33.inverse() << endl; //逆
cout << matrix_33.determinant() << endl; //行列式
// 特征值
// 实对称矩阵可以保证对角化成功
Eigen::SelfAdjointEigenSolver<Eigen::Matrix3d> eigen_solver ( matrix_33.transpose()*matrix_33 );
cout << "Eigen values = " << eigen_solver.eigenvalues() << endl;
cout << "Eigen vectors = " << eigen_solver.eigenvectors() << endl;
// 解方程
// 我们求解 matrix_NN * x = v_Nd 这个方程
// N 的大小在前边的宏里定义,矩阵由随机数生成
// 直接求逆自然是最直接的,但是求逆运算量大
Eigen::Matrix< double, MATRIX_SIZE, MATRIX_SIZE > matrix_NN;
matrix_NN = Eigen::MatrixXd::Random( MATRIX_SIZE, MATRIX_SIZE );
Eigen::Matrix< double, MATRIX_SIZE, 1> v_Nd;
v_Nd = Eigen::MatrixXd::Random( MATRIX_SIZE,1 );
clock_t time_stt = clock(); // 计时
// 直接求逆
Eigen::Matrix<double,MATRIX_SIZE,1> x = matrix_NN.inverse()*v_Nd;
cout <<"time use in normal invers is " << 1000* (clock() - time_stt)/(double)CLOCKS_PER_SEC << "ms" << endl;
// 通常用矩阵分解来求,例如 QR 分解,速度会快很多
time_stt = clock();
x = matrix_NN.colPivHouseholderQr().solve(v_Nd);
cout <<"time use in Qr compsition is " <<1000* (clock() - time_stt)/(double)CLOCKS_PER_SEC <<"ms" << endl;
return 0;
}

在CMakeList.txt中配置编译规则

include_directories(...)

括号内为Eigen头文件目录
之后可用find_package来搜索库

注: 为了实现更好的效率,在Eigen中要指定矩阵的大小和类型,处理起来会比动态的更快

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jason 20

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值