通信入门系列——信息论之信息熵、联合熵、条件熵、互信息量

本文介绍了信息论创始人克劳德·香农的重要贡献,包括比特的概念、信息熵、联合熵、条件熵和互信息量。同时提及微信公众号关于FPGA项目和开源代码的分享,强调这些概念在信息技术特别是FPGA开发中的实际应用。
摘要由CSDN通过智能技术生成

微信公众号上线,搜索公众号小灰灰的FPGA,关注可获取相关源码,定期更新有关FPGA的项目以及开源项目源码,包括但不限于各类检测芯片驱动、低速接口驱动、高速接口驱动、数据信号处理、图像处理以及AXI总线等
在这里插入图片描述
本节目录

一、信息论创始人——香农
二、信息和比特
三、信息熵
四、联合熵
五、条件熵
六、互信息量
本节内容

一、信息论创始人——香农
信息论创始人——香农,全称为克劳德·艾尔伍德·香农,美国数学家。1948年,香农发表了“A Mathematical Theory of Communication”即通信的数学原理,标志了信息论的诞生,在论文中定义了信息的度量单位比特、信息熵和信息容量,并证明了AWGN信道的信道容量为C=Blog(1+S/N),至今还指引着信息产业的发展。
二、信息和比特
香农定义了比特作为信息的度量单位。通常,在计算机领域所说的CPU是32bit或者64bit,和此处比特是一个意思。
香农中是如何定义信息的?
一个随机时间发生的概率是p,对应的自信息为I=-log§。概率p是一个小于1的数,取对数为负,再加上一个负号就变成了整数,若以2为底,信息I的单位就是bit。
插入一点,如果随机变量是离散的,那么p表示的是概率,如果随机变量是连续的,那么p表示的概率密度。
三、信息熵
无记忆信源,指的时当前事件发生的概率,与上一个事件没有关系。离散无记忆信源,用一个集合表示,集合当中的每个元素都是事件,每个事件都有一个发生的概率。将一个离散无记忆信源表达成一个概率分布的集合,即{p1,p2,……,pN}。
对于离散无记忆的信源,用信息论的知识来描述,就是常说的信息熵,简称熵entropy,表达式如下:
在这里插入图片描述

其中,-log(pi)表示每个事件的自信息,自信息乘以概率后求和,就是平均。可以将熵理解为信源当中所有事件的自信息的平均值,反映了一个信源整体的不确定度。在等概率分布,也就是p1=p2=……=pN=1/N时候,熵达到最大值。
四、联合熵
联合熵,可以直接从熵的定义来理解,描述的是(X,Y)联合信源的不确定度,其对应的表达式为:
在这里插入图片描述

五、条件熵
条件熵描述的是以某个事件为条件是,X的不确定度。若这个事件是一个具体的时间,可以用下述表达式来表达,其中随机变量Y=y时,X的不确定度为:
在这里插入图片描述

若Y是一个随机变量,对H(X|Y=y)取统计平均,得到的是在Y发生的总体条件下的X的不确定度,也就是所谓的条件熵:
在这里插入图片描述

若随机变量X、Y相互独立,则满足下述关系式:①H(X|Y)=H(X);②H(X,Y)=H(X)+H(Y)。同时,联合熵与条件熵满足H(X,Y)=H(X)+H(Y|X)。
六、互信息量
离散随机变量X,Y,其互信息I(X;Y)定义为:
在这里插入图片描述

常用的关系等式:
①I(X;Y)=I(Y;X);
②I(X;Y)=H(X)-H(X|Y);
③I(X;Y)=H(Y)-H(Y|X)。
其中H(X)是X的不确定度,H(X|Y)是以Y为条件的X的不确定度,H(Y)是Y的不确定度,H(Y|X)是以X为条件的Y的不确定度。
其中信息熵与互信息量的关系图如下:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小灰灰的FPGA

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值