1. 引言
焊接是现代制造业中至关重要的工艺之一,广泛应用于汽车、航空、造船、能源等行业。随着工业自动化的推进,焊接质量的控制和监测变得尤为重要。传统的焊接质量监测方法依赖于人工检测,存在较高的成本、低效和不一致性。随着深度学习技术的发展,基于计算机视觉的实时焊接质量监测系统成为了解决这一问题的有效手段。
YOLOv5(You Only Look Once v5)是一种高效的目标检测模型,它具有实时性强、准确度高和易于部署等优点。通过将YOLOv5与UI界面结合,可以构建一个智能化的焊接质量监测平台,实时监控焊接过程中的焊缝质量、缺陷检测等信息,从而提高焊接质量和生产效率。
本文将详细介绍如何基于YOLOv5构建焊接质量实时监测平台,结合UI界面实现实时的焊接质量检测,提供完整的代码实现,并介绍如何准备和标注数据集。
2. YOLOv5概述
2.1 YOLOv5的特点
YOLOv5是目前应用广泛的目标检测模型之一,它基于卷积神经网络(CNN)进行训练,并以其出色的速度和精度在各类视觉任务中获得了成功。YOLOv5的主要特点包括:
- 高速度与高精度:YOLOv5能够在较高的帧率下进行实时目标检测,且能够保