1. 引言
在现代实验室中,设备的有效管理和合理使用是保障科研工作的核心组成部分。然而,随着实验室设备种类的增多,如何高效、精准地监控设备的使用情况,成为了科研管理中的一大挑战。传统的人工监控不仅效率低下,而且容易出现漏监、误监的情况,影响实验室设备的使用率和安全性。
近年来,随着人工智能技术的发展,特别是计算机视觉领域的突破,基于深度学习的监控系统逐渐应用于实验室设备管理中。YOLOv5作为一种高效的目标检测模型,凭借其优异的实时性和准确性,在实验室设备监控中得到了广泛应用。本文将介绍如何使用YOLOv5模型,结合UI界面开发,实现实验室设备使用情况的实时监控。
2. 实验室设备使用监控的背景与挑战
随着科学研究活动的不断深入,实验室设备的种类和数量日益增加。设备的管理与使用情况监控对实验室的高效运作至关重要。尤其是在一些科研密集型的领域,如物理实验、化学实验、生物学实验等,设备的使用状态需要精确、实时的监控。然而,现有的实验室设备管理系统大多数依赖人工巡检和手动记录,存在以下问题:
- 人工监控不精准:人工监控容易受到主观因素影响,且难以实现对大规模设备的全覆盖。
- 实时性差:传统的监控系统无法及时反馈设备