零件缺陷检测系统:基于YOLOv10的划痕与缺失识别

一、项目背景与研究意义

在现代工业制造中,零件表面质量的自动化检测已成为智能制造的重要环节。传统人工检测不仅效率低下、成本高,而且准确性受主观影响。随着深度学习与计算机视觉技术的发展,基于YOLO(You Only Look Once)系列的缺陷检测算法凭借其端到端、速度快、精度高的特点,成为工业缺陷检测的主流方法之一。

本项目基于最新的 YOLOv10 实现一套用于检测零件表面缺陷(如划痕、裂纹、凹陷或缺失)的系统,结合 PyQT 构建可视化操作界面,实现:

  • 零件图像导入与预览;
  • 缺陷目标检测结果实时显示;
  • 模型预测性能评估;
  • 一键推理与导出结果。

二、数据集选择与准备

2.1 推荐数据集

我们采用 NEU Surface Defect Database(NEU-CLS)数据集,并扩展自定义数据。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO实战营

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值