一、项目背景与研究意义
在现代工业制造中,零件表面质量的自动化检测已成为智能制造的重要环节。传统人工检测不仅效率低下、成本高,而且准确性受主观影响。随着深度学习与计算机视觉技术的发展,基于YOLO(You Only Look Once)系列的缺陷检测算法凭借其端到端、速度快、精度高的特点,成为工业缺陷检测的主流方法之一。
本项目基于最新的 YOLOv10 实现一套用于检测零件表面缺陷(如划痕、裂纹、凹陷或缺失)的系统,结合 PyQT 构建可视化操作界面,实现:
- 零件图像导入与预览;
- 缺陷目标检测结果实时显示;
- 模型预测性能评估;
- 一键推理与导出结果。
二、数据集选择与准备
2.1 推荐数据集
我们采用 NEU Surface Defect Database(NEU-CLS)数据集,并扩展自定义数据。