随着农业现代化的不断推进,精准农业成为提高农作物产量和质量的关键技术之一。在田间管理中,杂草的生长不仅与作物争夺养分、水分和阳光,还可能传播病虫害,严重影响作物的生长。因此,开发一种高效、准确的杂草识别系统,对于实现精准除草、降低农药使用量、保护生态环境具有重要意义。
本文将详细介绍如何基于 YOLOv8 模型构建一个杂草识别系统,包括数据集的准备、模型的训练与优化、用户界面的设计与实现,并提供完整的实现代码,供研究和实践参考。
一、项目概述
本项目旨在利用 YOLOv8 模型对农田中的作物和杂草进行实时识别,辅助农民实现精准除草。系统集成了用户界面,方便用户进行图像上传、模型推理和结果可视化操作。
二、数据集选择与准备
1. 数据集来源
为了训练和评估模型,需要高质量的作物与杂草图像数据集。以下是推荐的数据集:
-
DeepWeeds 数据集:该数据集包含来自澳大利亚北部的 17,509 张图像,涵盖 8 种常见的杂草种类,适用于杂草识别任务。
- 数据集链接:DeepWeeds 数据集
-
W