1. 项目背景
康复训练是许多慢性病、神经损伤或术后患者恢复功能的关键环节。传统康复训练依赖专业人员现场指导,存在人力成本高、可及性差和主观性强的问题。借助计算机视觉和深度学习技术,实现对患者动作规范性的自动识别和反馈,将极大提高康复训练的效率和效果。
本项目基于最新的目标检测算法YOLOv8,结合实时视频输入和用户友好的界面,构建一套患者动作规范检测系统,自动识别患者动作是否标准,辅助康复指导。
2. 康复训练动作监测的技术挑战
- 动作多样且细微:康复动作种类繁多,动作细节对效果至关重要,需高精度检测
- 人体姿态复杂:不同患者体型差异大,且动作存在多角度变化
- 实时性要求高:反馈需及时,支持视频流在线处理
- 环境多变:光照、背景等对模型鲁棒性提出挑战
3. 目标检测与动作识别基础
动作识别大多结合人体姿态估计或目标检测。传统方法:
- 基于骨骼关键点估计(如OpenPose)
- 基于卷积神经网络提取动作特征
- 结合时序模型(