健身动作矫正系统 — 基于YOLOv8的深蹲与俯卧撑标准度识别与反馈

一、项目背景与意义

随着健康生活理念的普及,健身已成为许多人的日常活动。正确的动作姿势不仅能提高训练效果,还能有效避免运动伤害。传统的动作矫正依赖健身教练的现场指导,成本高且受限于教练资源。借助深度学习和计算机视觉技术,自动识别并反馈动作标准度,能够为广大健身爱好者提供实时、精准、低成本的训练辅助。

本项目基于YOLOv8目标检测技术,结合动作关键点估计与规则判断,实现对深蹲、俯卧撑等常见动作的标准度识别与矫正建议,并通过简洁的UI界面提供交互式反馈。


二、技术选型与系统架构

  • 目标检测模型:YOLOv8(Ultralytics开源版本)
  • 关键点检测辅助:可选集成OpenPose、MediaPipe Pose或专用关键点检测模型
  • 动作标准度判断:基于人体关键点角度阈值规则
  • UI界面:Python tkinter + OpenCV结合,实现视频展示与反馈提示
  • 数据集:公开健身动作数据集 + 自定义动作标准与非标准样本
  • 硬件要求:支持GPU推理(NVIDIA系列)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO实战营

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值