一、项目背景与意义
随着健康生活理念的普及,健身已成为许多人的日常活动。正确的动作姿势不仅能提高训练效果,还能有效避免运动伤害。传统的动作矫正依赖健身教练的现场指导,成本高且受限于教练资源。借助深度学习和计算机视觉技术,自动识别并反馈动作标准度,能够为广大健身爱好者提供实时、精准、低成本的训练辅助。
本项目基于YOLOv8目标检测技术,结合动作关键点估计与规则判断,实现对深蹲、俯卧撑等常见动作的标准度识别与矫正建议,并通过简洁的UI界面提供交互式反馈。
二、技术选型与系统架构
- 目标检测模型:YOLOv8(Ultralytics开源版本)
- 关键点检测辅助:可选集成OpenPose、MediaPipe Pose或专用关键点检测模型
- 动作标准度判断:基于人体关键点角度阈值规则
- UI界面:Python tkinter + OpenCV结合,实现视频展示与反馈提示
- 数据集:公开健身动作数据集 + 自定义动作标准与非标准样本
- 硬件要求:支持GPU推理(NVIDIA系列)