1. 项目背景与意义
牙科X光图像是牙科临床诊断的重要辅助工具。牙科医生通过X光片能够判断牙齿的结构、牙髓状况、牙周疾病和牙齿病变等。但人工分析X光图像费时费力,且依赖医生经验,存在误诊风险。
利用深度学习技术,尤其是目标检测模型,自动识别牙齿异常区域、牙齿种类和病灶等信息,能大幅提升诊断效率和准确率,为临床提供科学决策支持。
本项目基于Ultralytics最新的YOLOv8模型,结合PyQt5图形界面技术,构建一套牙科X光图像目标识别系统,满足临床实时辅助诊断需求。
2. 任务定义及挑战
任务定义
- 自动检测牙科X光图像中的牙齿及异常目标(如龋齿、根尖病变、牙周病等)
- 提供高精度边界框定位和分类标签
- 支持单张图像与实时视频(如动态口腔内窥镜X光影像)识别
主要挑战
- X光影像对比度低,病灶区域边缘模糊
- 牙齿间重叠和遮挡严重
- 多种异常目标小尺寸、多样性高
- 样本数量有限,需数据增强及迁移学习
3. 牙科X光图像公开数据集介绍
目前牙科X光目标检测相关公开数据集较少