RNA-seq分析:Step9(共表达分析)

本文介绍了WGCNA(Weighted Correlation Network Analysis)方法在基因表达数据分析中的应用,详细阐述了从R包安装到共表达网络构建、模块检测、基因模块与表型关联分析的步骤,强调了软阈值选择的重要性,并提供了数据导入、预处理和模块注释的流程。WGCNA是识别生物学过程相关基因模块的有效工具。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

前记

一、R包的安装

二、数据的载入和预处理

1、数据导入

2、样本的聚类

 3、软阈值的计算和选择

三、生成基因模块

四、基因模块与表型之间联系

 五、导出共表达网络文件

后记


前记

WGCNA(Weighted Correlation Network Analysis)是一种系统生物学中常用的数据分析方法,主要用于分析高通量基因表达数据。该方法通过构建基因共表达网络,将相似的基因组织到同一模块中,并用模块间的关联性进行分析,从而识别与生物学过程相关的模块和关键基因。

WGCNA分析流程主要包括:数据预处理、构建共表达网络、模块检测、模块注释和功能分析等步骤。其中,构建共表达网络是WGCNA的核心步骤,其基本思想是通过计算基因间的相关系数,建立基因共表达网络,然后利用模块检测算法将相关基因聚类成模块,进而探究不同模块与生物学过程的相关性。最终,可以对模块进行注释和功能分析,揭示其在生物学过程中的作用。

Figure 1
WGCNA的流程
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

沉香gege(不吃鸡肉版)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值