OpenAI GPT-4 Code Interpreter测试

文章介绍了OpenAI的GPT-4Beta版中的CodeInterpreter特性,该功能能处理Python代码、文件上传,特别是对PDF和图片的处理。虽然它能有效处理一些文件类型,但对于超过Token限制的长文本或代码,存在局限性,不能完整输出或处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

OpenAI GPT-4 Beta版本Code Interpreter功能分析

OpenAI最近在GPT-4中推出了Code Interpreter功能的Beta版本,它是ChatGPT的一个版本,可以编写和执行Python代码,并处理文件上传。以下是对其表现的基本分析。

GPT-4 Code Interpreter

主要功能

  1. 文件信息获取:Code Interpreter可以从文件名获取相关信息,并使用生成的Python代码对提供的文件类型进行处理。例如,PDF文件将被解析为文本,而PNG图片将被压缩后输入(目前还不清楚输入的具体格式)。
  2. Python代码生成:Code Interpreter会根据输入文件的类型生成相应的代码,输出包括STDOUT和STDERR,以及处理结果RESULT。这些内容都会被折叠展示。
  3. 超出Token Limit的内容处理:Code Interpreter利用生成的外部工具检索和摘取用户所需的内容部分,这部分内容会作为输入,其余内容则作为文件缓存,不会被直接读取。

功能测试

针对不同的文件类型,进行了Code Interpreter功能的测试。

图表(png)

Code Interpreter从文件名获取相关信息,可能有系统提示帮助模型注意到文件名。但是在处理图片过程中,图片被压缩,可能导致复杂视觉表格图片内容无法正确读取。
PNG Test

长文本(pdf)

对于PDF文件,Code Interpreter生成简单的代码并执行,例如使用PyPDF2处理PDF文件,并输出处理后的内容,包括STDOUT、STDERR和结果RESULT。

选取了较靠后的段落(超过Token限制)来检查GPT-4的Token分配情况。测试结果表明,GPT-4并未直接读取整个文件,而是引导用户选择一部分内容。然后,GPT-4会生成外部工具,利用这个工具检索和摘取用户指定的内容,将结果作为Context传入模型,结合用户的Prompt进行处理。

PDF Test
PDF Test - Detailed

短代码(ipynb)

对于短代码文本,GPT-4的Code Interpreter可以生成简单的解析工具获取文本,并将文本作为RESULT输入模型。
ipynb Test

长代码 (C++)

然而,对于长度超过最大Token数量的长文本代码,GPT-4的Code Interpreter未能正确输出完整的代码,只输出了其中一部分,并将这部分代码作为Context载入模型。

这就说明,对于长度超过Token Limit的文本,GPT-4的Code Interpreter功能仍有局限性。
Long Code Test
Long Code Test - Result

<think>好的,用户想了解或使用Dify作为AI代理的实现或使用信息。我需要先回忆一下Dify的相关知识。Dify是一个开源的LLM应用开发平台,支持构建基于大语言模型的AI代理和应用程序。用户可能想知道如何具体实施或使用它作为AI代理。 首先,我应该介绍Dify的基本概念和核心功能,比如可视化编排和多种模型支持。然后,可能需要分步骤说明如何实现AI代理,包括安装、创建应用、配置Agent工具等。同时,用户可能关心具体的代码示例,所以需要提供API调用或配置文件的例子。 还要考虑用户可能的后续问题,比如性能优化、多模型集成或者企业级应用场景,因此生成相关问题会有帮助。需要确保使用正确的LaTeX格式,比如变量用$...$,独立公式用$$...$$。另外,引用部分要正确标注,比如引用提供的资料中的[^1]和[^2]。 需要检查是否有遗漏的关键点,比如Dify的RAG引擎、支持的模型类型,或者如何扩展自定义工具。确保回答结构清晰,步骤明确,用户能按指南操作。最后,验证所有技术术语和流程的正确性,避免错误信息。</think>### Dify作为AI代理的实现与使用指南 Dify是一个开源的LLM应用开发平台,支持构建基于大语言模型的AI代理(Agent)和应用程序。其核心功能包括可视化编排AI工作流、支持多种模型(如GPT-4、Claude等)以及RAG引擎[^1]。 #### 一、实现AI代理的步骤 1. **环境搭建** ```bash # 使用Docker部署 git clone https://github.com/langgenius/dify cd dify && docker-compose up -d ``` 2. **创建AI应用** - 在仪表盘选择"创建空白应用" - 配置基础信息:命名空间、模型供应商(如OpenAI- 设置API密钥:$API_KEY = os.getenv("OPENAI_API_KEY")$ 3. **配置Agent工具** ```yaml # agent_tools.yml示例 tools: - type: web_search config: engine: google max_results: 5 - type: code_interpreter enable: true ``` #### 二、核心功能实现 1. **对话流程控制** ```python from dify_client import DifyClient client = DifyClient(api_key="your_api_key") response = client.generate( inputs={"query": "查询北京天气"}, tools=["web_search", "knowledge_base"], reasoning_mode="chain_of_thought" # $f(x)=\sum_{i=1}^n w_i x_i$ ) ``` 2. **记忆机制** $$M_t = \alpha M_{t-1} + (1-\alpha)E_t$$ 其中$\alpha$为记忆衰减因子,$E_t$为当前对话的嵌入向量 #### 三、典型应用场景 1. 客服自动化(支持上下文保持[^1]) 2. 数据分析助手(集成SQL执行器) 3. 智能文档处理(基于RAG引擎) ```python # RAG实现示例 def retrieve_context(query): embedding = model.encode(query) return vector_db.search(embedding, top_k=3) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值