大模型+知识图谱:赋能知识智能新升级

在大模型(Large Language Model, LLM)飞速发展的今天,如何把传统行业中沉淀多年的大量结构化与非结构化数据真正“用起来”,正成为推动智能化转型的关键一步。

*找得到,看得懂,为何很难?*

以制造业、医药行业、法律行业和能源行业为代表的知识密集型领域,早已积累了海量的国家标准、行业标准、企业标准、法律法规、管理制度和专利文档。这些资料更新频率不高、内容稳定且专业性强,是极其宝贵的“知识财富”。但遗憾的是,这些知识往往被静静“躺”在数据库和文档库中吃灰,检索方式主要还是靠关键词匹配,缺乏理解语义的能力。这就导致了一个常见的问题:当业务人员想要查找某一专题相关内容,尤其是跨文档、跨章节、甚至涉及深层次逻辑关系的问题时,系统往往“找不全”也“看不懂”。

举个例子,在电力行业中,电压互感器(PT)二次回路就像系统的“神经通路“。一旦出现问题,排查过程非常依赖大量标准和规程,比如国标《继电保护及安全自动装置技术规程》GB/T 14285-2023、行标《互感器运行检修导则》DL/T 727-2013、企标《输变电设备状态检修试验规程》Q/GDW 1168-2013等超过200项规范。在实践中,有多达30%的故障误判是因为标准条款引用不准确。而要人工精读和整理一部不到100页的规范文档,往往需要具备专业背景的人在工具辅助下投入半个人天。这种情况下,传统文档系统在面对“绝缘介质劣化对二次电压有哪些影响”这类跨规范、跨章节的问题时,平均只能召回60%左右的相关内容,远远不能满足业务需求。

尽管大模型技术的兴起带来了新的希望,如基于LLM的RAG(检索增强生成)系统,能够调用相关内容并生成答案,但仍面临一些挑战:比如遗漏关键内容、生成的回答不够准确,甚至出现事实错误。此外,面对标准更新或新条款的加入,传统预训练的大模型还需要重新训练才能响应新知识,这在实际应用中成本不低。

相比之下,知识图谱(Knowledge Graph, KG)作为一种结构化知识管理方式,通过“实体-关系-实体”的三元组结构,可以构建出清晰的知识网络。它不仅能把专家知识沉淀为可靠的领域底座,还能以远低于大模型的成本进行知识更新和维护。同时,其符号化表达天然支持逻辑推理,非常适合用于标准规范、设备故障、经验规则等高精度场景。

不过,知识图谱也有自己的“短板”:构建门槛高、难以动态补全新知识,对文本中隐含语义的表达能力较弱,而且跨领域的泛化能力不足。简单来说,它“精而不广”,在特定领域能做得很好,但很难像大模型那样灵活应对各种任务。

“领域KG+LLM”双驱动框架

因此,我们提出一种“领域知识图谱 + 大模型”双驱动的融合框架。以实际业务问题为出发点(比如PT二次回路故障),在融合标准规范、设备信息、业务经验和模型知识的基础上,构建出多维度、语义化的知识网络。借助大模型强大的语言理解和生成能力,让机器不仅能“读懂”文档,还能“串联”知识,实现真正的智能问答与辅助决策,从而为一线岗位提供精准、高效的知识支持。

查询示例1:漏检电容式电压互感器二次回路的发热现象可能有哪些影响?

图片

查询示例2:电容式电压互感器中与绝缘油相关的二次回路故障有哪些?

图片

查询示例3:绕组匝间短路有哪些表现,对三相电压平衡有哪些影响?

图片

该框架的创新在于充分发掘了大模型与知识图谱的长处,互补短板:首先,从更微观的视角将大量艰深的标准规范与制度,与企业沉淀的知识、业务需求结合起来,提供更具专家品质的知识参考。其次,通过知识图谱与LLM之间的协同机制,提升知识获取的可解释性与推理能力。再次,提升了知识获取与更新效率,将知识个性化需求敏捷响应与动态适应融合。

小结

“领域知识图谱+LLM”双驱动框架不仅是一种技术路径,更是一种面向未来的智能知识管理范式,尤其适用于需高频引用标准、强调结果一致性的场景。它兼顾了结构化与语义理解、知识稳定性与灵活更新、专家经验与数据驱动智能,为知识密集型行业的智能化转型提供了高协同、高效率、低成本、强可持续的基础设施。未来,随着行业知识标准的不断演进和AI技术生态的持续丰富,该框架有望进一步拓展至企业战略管理、培训赋能、客户服务等更广泛场景,真正实现“知识即服务”“智能即能力”的落地目标。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值