一、论文信息
论文题目:SCTNet: Single-Branch CNN with Transformer Semantic Information for Real-Time Segmentation
中文题目: 单分支CNN结合Transformer语义信息的实时分割网络
论文链接:https://arxiv.org/pdf/2312.17071
官方github:https://github.com/xzz777/SCTNet
二、论文概要
图5:在Cityscapes验证集上的可视化结果。与DDRNet-23(Pan等人,2022年)和RTFormer-B(Wang等人,2022年)相比,SCTNet-B生成的掩码具有更精细的细节,如浅蓝色框中突出显示的那样,以及更准确的大面积预测,如黄色框中突出显示的那样。
研究背景:
- 实时语义分割方法: 近期的实时语义分割方法通常采用额外的语义分支来追求丰富的长距离上下文信息,但额外的分支会带来不希望的计算开销并减慢推理速度。
本文贡献:
-
SCTNet的提出: 一种新颖的单分支实时分割网络,称为SCTNet。通过学习利用从transformer到CNN的语义信息对齐来提取丰富的语义信息,SCTNet在保持轻量级单分支CNN的快速推理速度的同时,享受transformer的高准确性。
-
CFBlock:为了缓解CNN特征和Transformer特征之间的语义差距,设计了CFBlock(ConvFormer块),它仅使用卷积操作就能像Transformer块一样捕获长距离上下文。此外,提出了SIAM(语义信息对齐模块),以更有效的方式对齐特征。
三、方法
图3:SCTNet的架构。CFBlock(Conv-Transformer,详见图4)通过SIAM(语义信息对齐模块)利用训练仅限的Transformer分支(在虚线框中以灰色显示),该模块由BFA(主干特征对齐)和SDHA(共享解码器头对齐)组成。
图4:Conv-Former块的设计(左)和卷积注意力的细节(右)。GDN表示分组双重归一化。⊗表示卷积操作,⊕代表加法,k表示核大小。
Conv-Former Block旨在模拟 Transformer 的结构,以更好地学习 Transformer 分支的语义信息,同时仅使用高效的卷积操作来实现注意力功能:
1. 结构设计:Conv-Former Block 的结构类似于典型的 Transformer 编码器。
2. 卷积注意力:为了实现低延迟和强大的语义提取能力,Conv-Former Block 的卷积注意力基于 GFA(GPU-Friendly Attention)改进而来。主要区别在于:
-
使用像素级卷积操作替代 GFA 中的矩阵乘法,避免了特征展平和重塑操作,以保持固有的空间结构并减少推理延迟。
-
通过将可学习向量扩展为可学习的核,以更好地对齐 Transformer 的语义信息。这种转换将像素与可学习向量之间的相似度计算转换为像素块与可学习核之间的相似度计算,并通过带有可学习核的卷积操作保留更多的局部空间信息。
3. 实现细节:为了提高效率,Conv-Former Block 使用条带卷积来近似标准卷积层。具体来说,使用 1×k 和 k×1 的卷积来近似 k×k 的卷积层。
4. 前馈网络(FFN):与典型的 FFN 相比,Conv-Former Block 的 FFN 由两个标准的 3×3 卷积层组成,这比典型的 FFN 更高效,并提供了更大的感受野。
CFBlock 结合卷积和 Transformer 的特性,通过 Conv-Former 高效建模局部和全局依赖关系,能够在多种视觉任务中发挥作用,尤其是在需要平衡性能与效率的场景下(如实时检测或分割任务)。可以调整模块中卷积核的尺度、注意力头的数量以及中间通道数,以适配不同任务的需求。
注:Convolutional Attention模块也可单独拿出来使用!
四、实验分析
-
Cityscapes数据集上:SCTNet-B-Seg 100实现了80.5%的mIoU和62.8 FPS,这是实时分割领域的新状态最佳性能。SCTNet-B-Seg 75达到了79.8%的mIoU,比RTFormer-B和DDRNet-23等方法在准确率上更高,同时速度是它们的两倍。SCTNet-S在保持最高FPS的同时,也实现了与STDC 2、RTFormer-S、SeaFormer-B和TopFormer-B等方法相比更好的性能。
-
ADE 20K数据集上:SCTNet-B实现了43.0%的mIoU和145.1 FPS,比RTFormer-B快约1.6倍,同时mIoU性能高出0.9%。SCTNet-S达到了37.7%的mIoU,保持了在ADE 20K上所有方法中最高的FPS。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。