大模型语义分析之嵌入(Embedding)模型

嵌入是大模型的基础,而嵌入的底层结构就是向量,而表示方式就是矩阵

嵌入——Embedding,可能有些人了解过这个词,也可能没了解过这个词;但不管怎么说,嵌入在大模型技术中扮演着非常重要的角色;它是很多上层技术的基础。

大模型的底层数学结构是向量,而由于计算机只能进行数值计算;因此向量在计算机中是通过矩阵结构进行表示的,优点就在于计算简单;并且能进行升维和降维操作。

嵌入就是把数据(包括文本,图像,音视频等多种模态的数据)向量化表示的技术!!!

大模型之嵌入——Embedding

今天在研究RAG技术的时候,一直在思考一个问题,嵌入;在RAG的流程中,第一步是文档加载,第二步就是文档切片然后调用嵌入模型把文档转化为向量模式。

所以,这里就产生了一个问题,那就是这个嵌入过程是什么样的?简单来说就是怎么把文本或图片等多种模态的数据,通过嵌入模型转化为向量数据?

嵌入模型不仅仅只是把文本或图片转换成向量模式,还有更重要的一点就是要保证嵌入文本的语义关系。所以,这个都是怎么实现的?

在文档分割的过程中,有一个很重要的环节就是文档切分,文档切分的不同方式直接影响到嵌入向量的语义效果;因此,在RAG中嵌入模型很重要,文档切分也同样重要。

在大模型中,比如以Transformer架构为例,其使用了自注意力机制来保证文档语义的连贯性;但文档数据输入大模型之前,同样必须转化为向量格式的数据才能被大模型所识别,然后进行处理。

但文档在输入大模型之前转换的向量是没有语义关系的;所以,大家是否发现大模型训练和嵌入大模型的区别?

普通大模型训练是学习文档中的语义关系;而嵌入模型是接受一个文档作为输入,然后根据自己习得的参数对文档进行语义转换,然后输出一段有语义关系的向量数据。

而文档中语义之间的关系,经过向量化之后是通过向量之间的数学关系来表示的;比如欧式距离,余弦值等。

关于文档向量化的过程,除了采用嵌入模型之外,还有其它多种方式来实现;比如说,One-Hot独热编码和词袋模型等;只不过热独编码和词袋模型无法保证文档的语义关系,虽然其也构建了词汇表,但每个词都是独立的,没有任何数学上的关系体现。

这篇文章说是介绍嵌入,不如说是自己思考问题的记录;今天看了大半天的嵌入问题,也查了很多资料;但总觉得是在雾里看花,很多问题都不明白,也抓不着重点。

记录几个问题:

嵌入是怎么理解语义的?

大模型是怎么理解语义的?

分块对语义的影响以及原因是什么?

大模型训练的参数与语义理解的关系?

向量 矩阵 embedding transformer架构之间的关系是什么?

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### 不同类型的机器学习模型对比 大型模型通常指的是参数量非常庞大的神经网络架构,在自然语言处理其他领域取得了显著成就。这些模型通过大量数据训练,能够捕捉复杂的模式并执行高级任务[^1]。 #### 大型模型的特点 - **复杂度高**:拥有数亿甚至数十亿个参数。 - **资源需求大**:需要强大的计算能力长时间来完成一次完整的训练周期。 - **泛化能力强**:由于其规模庞大以及预训练机制的存在,可以在多种下游任务上取得优异表现而无需重新设计整个框架。 - **迁移学习友好**:经过充分调优后的大规模预训练模型可以很容易地适应新的特定应用场景,只需微调少量顶层权重即可实现良好效果。 ```python import transformers as trf from torch.utils.data import DataLoader model_name = "bert-base-uncased" tokenizer = trf.BertTokenizer.from_pretrained(model_name) large_model = trf.BertForSequenceClassification.from_pretrained(model_name) def prepare_dataloader(dataset, batch_size=8): dataloader = DataLoader(dataset, shuffle=True, batch_size=batch_size) return dataloader ``` #### Embedding模型特点 Embedding模型主要用于将离散的数据(如单词或短语)映射到连续向量空间中表示。这类方法对于提高文本分类、推荐系统等应用的效果至关重要。 - **低维度密集向量**:相比独热编码等方式,嵌入层产生的特征更加紧凑有效率。 - **保留语义信息**:相似含义的内容会被放置在接近的位置;比如,“king” “queen”的向量距离较近。 - **易于集成其他组件**:作为输入提供给更深层次的学习算法之前的一个转换步骤,几乎所有的NLP管道都会涉及此过程。 ```python import gensim.downloader as api word_vectors = api.load("glove-wiki-gigaword-100") # 加载GloVe词向量 example_word = 'hello' print(f"The vector representation of '{example_word}' is:\n{word_vectors[example_word]}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值