2024年十大开源RAG框架

检索增强生成(RAG)已成为增强大型语言模型能力的一项强大技术。

RAG框架结合了基于检索系统的优点与生成模型的优势,能够提供更准确、更具上下文感知能力以及更及时的响应。随着对复杂AI解决方案的需求增长,许多开源的RAG框架在GitHub上涌现,每个框架都提供了独特的功能和能力。

RAG框架的作用是什么?

检索增强生成(RAG)是一种人工智能框架,通过整合外部知识源来增强大型语言模型(LLM)的能力。

RAG通过从知识库中检索相关信息并利用这些信息来增强LLM的输入,从而使得模型能够生成更准确、更及时且更符合上下文的相关响应。

这种方法有助于克服诸如知识截止日期等限制,并减少LLM输出中幻觉的风险。

我为何不能直接使用LangChain?
虽然LangChain是构建LLM应用程序的强大工具,但它并不是RAG的直接替代品。相反,LangChain可以用于实现RAG系统。以下是您可能需要RAG而不仅仅是LangChain的原因:

1、 外部知识:RAG允许您将领域特定或最新的信息整合到LLM的训练数据中,这些信息可能不在LLM的训练数据中。
2、 提高准确性:通过基于检索到的信息生成响应,RAG可以显著减少错误和幻觉。
3、 定制化:RAG使您能够根据特定的数据集或知识库调整响应,这对于许多商业应用至关重要。
4、 透明度:RAG使追溯生成响应所用信息的来源变得更加容易,从而提高了审计性。
简而言之,虽然LangChain提供了构建LLM应用程序所需的工具和抽象,但RAG是一种特定的技术,可以通过LangChain实现,以提高LLM输出的质量和可靠性。

GitHub上最佳的10种RAG框架,现在就可以使用
在这篇文章中,我们将探讨目前在GitHub上可用的10种顶级RAG框架。这些框架代表了RAG技术的最前沿,对于希望实施或改进其AI驱动应用程序的开发人员、研究人员和组织来说,非常值得研究。

1. Haystack by deepset-ai

GitHub Stars: 14.6k stars

Haystack 是一个强大且灵活的框架,用于构建端到端的问答和搜索系统。它提供了一种模块化架构,允许开发人员轻松地为包括文档检索、问答和摘要在内的各种 NLP 任务创建管道。Haystack 的主要特性包括:

  • 支持多种文档存储(如 Elasticsearch、FAISS、SQL 等)

  • 与流行语言模型(如 BERT、RoBERTa、DPR 等)集成

  • 可扩展架构,用于处理大量文档

  • 构建自定义 NLP 管道的易于使用的 API

由于 Haystack 的多功能性和详尽的文档,无论是初学者还是经验丰富的开发人员,如果想要实现基于 Agent 的检索(RAG)系统,它都是一个极佳的选择。

git地址:https://github.com/deepset-ai/haystack

2. RAGFlow by infiniflow

GitHub Stars: 11.6k

RAGFlow 是最近加入到 RAG 框架领域的一个新成员,但它由于专注于简洁性和效率,迅速获得了关注。该框架旨在通过提供一套预构建的组件和工作流,简化基于 RAG 应用程序的开发流程。RAGFlow 的显著特性包括:

  • 直观的工作流设计界面

  • 针对常见用例的预配置 RAG 管道

  • 与流行的向量数据库集成

  • 支持自定义嵌入模型

RAGFlow 用户友好的方法使其成为希望快速原型化和部署 RAG 应用程序而无需深入研究底层复杂性的开发人员的有吸引力的选择。

git地址:https://github.com/infiniflow/ragflow

3. txtai by neuml

GitHub Stars: 7.5k

txtai 是一个多功能的AI驱动的数据平台,超越了传统的RAG框架。它提供了一系列构建语义搜索、语言模型工作流以及文档处理流水线的全面工具。txtai 的关键能力包括:

  • 用于高效相似性搜索的嵌入式数据库

  • 集成语言模型和其他AI服务的API

  • 可扩展架构,支持自定义工作流

  • 多语言和多种数据类型的支持

txtai 的一站式方案使其成为希望在一个框架内实施各种AI功能的组织的绝佳选择。

git地址:https://github.com/neuml/txtai

4. STORM by stanford-oval

GitHub Stars: 5k Stars

STORM(斯坦福开源RAG模型)是由斯坦福大学开发的一个面向研究的RAG框架。尽管与一些其他框架相比,它的GitHub星数可能较少,但其深厚的学术背景和对前沿技术的专注,使其成为对RAG技术最新进展感兴趣的科研人员和开发者的宝贵资源。STORM值得关注的方面包括:

  • 实现新颖的RAG算法和技术

  • 专注于提高检索机制的准确性和效率

  • 与最先进的语言模型集成

  • 详尽的文档和研究论文

对于那些希望探索RAG技术最前沿的人来说,STORM提供了一个坚实的基础,并且得到了学术严谨性的支持。

git地址:https://github.com/stanford-oval/storm

5. LLM-App by pathwaycom

GitHub Stars: 3.4K

LLM-App 是一组用于构建动态 RAG 应用程序的模板和工具集。它通过专注于实时数据同步和容器化部署而脱颖而出。LLM-App 的关键特性包括:

  • 可快速部署的预构建 Docker 容器

  • 支持动态数据源和实时更新

  • 与流行的 LLM 和向量数据库集成

  • 适用于各种 RAG 场景的可定制模板

LLM-App 对操作方面和实时能力的重视使其成为希望部署生产就绪 RAG 系统的组织的有吸引力的选择。

git地址:https://github.com/pathwaycom/llm-app

6. Cognita by truefoundry

GitHub Stars: 3k stars

Cognita 是 RAG 框架领域的一个新进入者,专注于提供一个统一的平台来构建和部署 AI 应用程序。虽然它的星标数量不如一些其他框架多,但是其全面的方法和对 MLOps 原则的强调使其值得一试。Cognita 的一些值得注意的特点包括:

  • 全流程的 RAG 应用开发平台

  • 与流行机器学习框架和工具的集成

  • 内置的监控和可观测性功能

  • 对模型版本管理和实验跟踪的支持

Cognita 对 AI 应用开发的整体性方法,使其成为希望简化整个机器学习生命周期的组织的有力选择。

git地址:https://github.com/truefoundry/cognita

7. R2R by SciPhi-AI

GitHub Stars: 2.5k stars

R2R(检索到检索)是一种专注于通过迭代细化来改进检索过程的专门的RAG框架。尽管它可能拥有的星标较少,但其在检索方法上的创新使其成为值得关注的框架。R2R的关键特点包括:

  • 实现新型检索算法

  • 支持多步骤检索流程

  • 与各种嵌入模型和向量存储集成

  • 用于分析和可视化检索性能的工具

对于希望突破检索技术界限的开发者和研究人员来说,R2R提供了一套独特而强大的工具。

8. Neurite by satellitecomponent

GitHub Stars: 909 stars

Neurite 是一个新兴的RAG框架,旨在简化构建AI驱动应用程序的过程。尽管其用户群体相对于其他一些框架较小,但它专注于开发人员体验和快速原型设计,使其值得探索。Neurite 的一些显著特点包括:

  • 构建RAG管道的直观API

  • 支持多种数据源和嵌入模型

  • 内置缓存和优化机制

  • 可扩展架构以支持自定义组件

Neurite 对简洁性和灵活性的强调使其成为希望快速在其应用程序中实现RAG功能的开发者的有吸引力的选择。

git地址:https://github.com/satellitecomponent/Neurite

9. FlashRAG by RUC-NLPIR

GitHub Stars: 905 Stars

FlashRAG 是由中国人民大学自然语言处理与信息检索实验室开发的一款轻量级且高效的检索增强型生成(RAG)框架。尽管它的星标数量可能较少,但其对性能和效率的关注使其成为一个值得关注的竞争者。FlashRAG 的关键方面包括:

  • 优化的检索算法以提高速度

  • 支持分布式处理和扩展

  • 与流行的语言模型和向量存储集成

  • 用于基准测试和性能分析的工具对于需要高速度和高效性的应用,FlashRAG 提供了一套专门的工具和优化措施。

git地址:https://github.com/RUC-NLPIR/FlashRAG

10. Canopy by pinecone-io

GitHub Stars: 923

Canopy是由Pinecone公司开发的一种RAG框架,该公司以其向量数据库技术而闻名。Canopy利用了Pinecone在高效向量搜索方面的专业知识,提供了一种强大且可扩展的RAG解决方案。Canopy的显著特性包括:

与Pinecone向量数据库的紧密集成
支持流处理和实时更新
先进的查询处理和重新排序功能
管理知识库和版本控制的工具Canopy专注于可扩展性和与Pinecone生态系统的集成,使得它成为那些已经在使用或考虑使用Pinecone进行向量搜索需求的组织的理想选择。

git地址:https://github.com/pinecone-io/canopy

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值