一、AI大模型的发展与分类
AI大模型的发展可以说是科技进步中的一项重要里程碑。起初,传统AI专注于特定任务,如图像识别等感知智能。然而,随着技术的进步,出现了能够完成复杂任务的认知智能,即以ChatGPT为代表的大模型。这些大模型通过深度学习和庞大的数据训练,实现了更高层次的人机交互能力。
在分类上,大模型可分为通用大模型和垂直大模型两类。通用通用大模型旨在模仿人类智能行为,能够执行任何人类智能活动;而垂直大模型则聚焦于特定领域或任务。这种分类帮助我们更好地理解不同类型的大模型在实际应用中的优势和局限性。
AI发展的三个阶段通常指的是:
(1)传统AI:这个阶段主要专注于特定任务的感知智能,比如图像识别技术。这些系统通常被设计来完成特定的任务,并且在这些任务上表现出高效和精确。
(2)AI大模型:这个阶段指的是能够完成复杂任务的认知智能,即以ChatGPT为代表的AIGC(AI Generated Content,人工智能生成内容)。这些模型能够理解和生成自然语言,执行多种复杂的任务,如语言翻译、文本摘要、问答系统等。
(3)通用人工智能(AGI):这是AI发展的最终目标,指的是能够完全模仿人类智能的行为,能够执行任何人类智能活动。AGI将具有自我意识、情感、创造性和其他人类智能的复杂特征,但目前还没有实现。
这三个阶段代表了从简单的自动化任务到复杂的认知任务的演变,以及从特定功能到广泛适用性的发展。
二、政务大模型
政务领域的信息量庞大且复杂,传统的沟通机制往往难以应对。而大模型通过私有化部署,为政务网站、公众号、App及办事大厅等平台提供了强大的支持。它们能够自动识别咨询人的核心诉求,并精准检索定位知识点,从而减少人工负担,提高政务服务效率。
此外,大模型还助力构建政务知识库,通过整合内外部公开信息,实现统一管理和自动解读。这不仅提升了政务服务质量,也有效保障了数据隐私安全。在一些地方政府中,大模型已经成为提升工作效率的重要工具。
2.1、大模型+政务智能问答
“大模型+政务智能问答”是指利用大型人工智能模型来增强政务服务的智能化水平,通过自然语言处理和机器学习技术,提供自动化的问答服务。这种服务能够理解和回答用户的咨询,提供快速、准确的反馈,从而提高政务服务的效率和用户满意度。大模型+政务智能问答的应用场景包括:
- 智能问答:
通过大模型技术,构建政务知识库,统一管理图文、音视频材料,自动解读并生成问答知识点,定位咨询内容位置。这可以帮助政府机构和公共部门提高响应市民需求的速度,减少人工负担。
- 智能应用:
将大模型的能力私有化部署在政务网站、公众号、App及办事大厅等平台中,支持页面样式开发。这样可以提供面向群众和面向业务的各类咨询问答与意见建议。
- 知识问答:
针对企业内部或政府机构的各类业务知识,通过大模型提供智能问答服务,私有化部署,实现知识的快速检索和应用。
- 公文内容校对:
利用大模型自动校对公文中的文字差错、知识性差错、内容风险识别,并生成符合排版要求的公文文件。这可以提高公文处理的效率和质量。
- 公文识别提取:
基于版面分析模型,自动识别公文的版头、主体、版记、公章等元素,以便于后续的自动化处理。
通过这些应用,大模型+政务智能问答能够有效地提升政务服务的智能化水平,使其更加高效、准确和安全。
2.2、落地案例:某市工信局+智能回答
某市工信局的落地案例展示了大模型技术在政务智能问答领域的应用。以下是该案例的关键点:
- 客户需求:
-
开发面向群众和面向业务的智能问答业务功能的页面接口。
-
支持自动回答各类政策咨询与投诉。
- 应用场景:
- 大模型+政务智能问答:利用大模型技术,帮助工信局搭建政务问答知识库,提供咨询问答与意见建议。
- 解决方案:
-
通过大模型能力,整合内外部公开信息,构建政务知识库,统一管理图文、音视频材料。
-
自动解读并生成问答知识点,定位咨询内容位置,以提升政务服务效率。
- 实施效果:
-
减少人工负担,提升政务服务效率。
-
通过对话式交互,自动识别咨询人核心诉求,精准检索定位知识点,智能答疑政策、流程、规划等。
- 技术实现:
-
私有化部署大模型能力,支持页面样式开发,以适应工信局的特定需求。
-
利用大模型进行文件答疑,统一文件管理,确保数据隐私安全。
通过这个案例,可以看出大模型技术在政务领域的应用能够显著提高服务效率和质量,同时也能够保护数据隐私和安全。这种技术的应用有助于推动政务服务的现代化,使其更加智能化和自动化。
2.3 落地案例:大模型+公文校对
某市统战部的案例,展示了大模型技术在公文校对领域的应用,特别是针对日常文件通知和思想汇报等文字材料的自动化校对。以下是该案例的关键点:
- 客户需求:
-
对日常的文件通知、思想汇报等文字材料进行自动校准。
-
实现文本输出的严谨性,尽量规避文字差错。
- 应用场景:
- 大模型+公文校对:利用大模型技术,提供自动化的公文校对服务,包括文字标点差错校对、内容导向风险识别、知识性差错校对等。
- 解决方案:
-
通过在线纠错功能,对输入的内容实时查错,并给予纠错建议。
-
降低员工工作压力,提高工作效率。
- 实施效果:
-
提高文本输出的质量,确保公文的标准化和规范化。
-
通过自动化校对,解决人工审核视觉疲劳产生的疏漏和校对错误问题。
- 技术实现:
-
利用大模型进行实时查错和纠错,提供快速反馈。
-
结合本地化部署,隔离外网,确保数据安全和保密性。
通过这个案例,可以看出大模型技术在公文校对方面的应用能够显著提高公文处理的效率和质量,同时确保数据的安全性和保密性。这种技术的应用有助于提升政府机关和公共部门的工作效率,确保公文的规范性和准确性。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。