搭建RAG应用,Embedding模型如何选?

在搭建RAG系统时,选择合适的Embedding模型是至关重要的一步,下面是我对选择Embedding模型时需要考虑的关键因素和建议,供您参考:

明确应用场景

首先,需要明确RAG系统的具体应用场景和需求。例如,是处理文本数据、图像数据还是多模态数据?不同的数据类型可能需要不同的Embedding模型。例如,对于文本数据,可以参考HuggingFace的MTEB(Massive Text Embedding Benchmark:衡量文本嵌入模型的评估指标合集)排行榜来选择适合的模型,或者上国内的魔搭社区看下排行榜。

通用与特定领域需求

其次,根据任务的通用性或特定性选择模型。如果您要实现的任务较为通用,不涉及太多领域的专业知识,可以选择通用的Embedding模型;如果任务涉及特定领域(如法律、医疗等、教育、金融等),则需要选择更适合该领域的模型。

多语言需求

如果您的系统中的知识库内容存在,需要支持多种语言,可以选择多语言Embedding模型,如BAAI/bge-M3、bce_embedding(中英)等,这些模型在多语言环境下表现较好。如果您的知识库中主要包含的都是中文数据,可以选择 iic/nlp_gte_sentence-embedding_chinese-base 等模型效果会更好。

性能评估

查看MTEB排行榜等基准测试框架评估不同模型的性能,这些排行榜覆盖了多种语言和任务类型,可以帮助你找到在特定任务上表现最佳的模型。其次需考虑模型的规模和资源限制,较大的模型可能提供更高的性能,但也会增加计算成本和内存需求。另外,较大的嵌入维度通常能提供更丰富的语义信息,但也可能导致更高的计算成本。因此,大家需要根据实际硬件资源和性能需求权衡选择。

实际测试与验证

最后,有条件的话,可以选择2-3个模型进行效果对比,在实际业务场景中测试和验证所选模型的性能,观察准确率和召回率等指标评估模型在特定数据集上的表现,并根据结果进行调整。

Embedding模型推荐

以下是5个主流的Embedding模型,推荐给大家用于搭建RAG系统做参考:

BGE Embedding:由智源研究院开发,支持多语言,提供多个版本,包括高效的reranker。该模型开源且许可宽松,适用于检索、分类、聚类等任务。

GTE Embedding:由阿里巴巴达摩院推出,基于BERT框架,适用于信息检索和语义相似性判断等场景,性能卓越。

Jina Embedding:由Jina AI的Finetuner团队打造,基于Linnaeus-Clean数据集训练,适用于信息检索和语义相似性判断,性能出众。

Conan-Embedding:这是一个针对中文优化的Embedding模型,在C-MTEB上达到了SOTA(State-of-the-Art)水平,特别适合需要高精度中文语义表示的RAG系统。

text-embedding-ada-002:由Xenova团队开发,与Hugging Face库兼容,提供高质量的文本向量表示,适用于多种NLP任务。

当然,还有Sentence-BERT、E5-embedding、Instructor等等,这些模型在不同的场景下表现情况也会有些差异,可以根据您具体需求和我上面列举的考虑因素,选择合适自己的模型来构建RAG系统。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### 构建RAG模型私有知识库 #### 使用Deepseek和Dify实现本地部署 为了在本地环境中使用Deepseek和Dify构建RAG模型的私有知识库,需完成一系列配置与集成操作。具体过程涉及环境准备、安装必要的软件包和服务设置。 #### 环境准备 确保拥有适合运行大型语言模型的基础架构,包括但不限于足够的计算资源(CPU/GPU)、内存空间及存储容量。此外,还需准备好支持Python编程的语言环境及相关依赖项[^3]。 #### 安装Deepseek-R1 按照官方文档指导,在服务器上部署Deepseek-r1版本的大规模预训练模型实例。此步骤通常涉及到下载权重文件、调整参数配置以适应硬件条件等操作[^1]。 #### 配置Dify平台 通过Dify提供的API接口或命令行工具连接已部署好的Deepseek-r1服务端口,使两者之间建立有效的通信链路。此时可以测试二者之间的连通性,确认消息传递正常无误[^2]。 #### 创建嵌入式索引 针对目标领域内的文本资料集执行向量化处理,生成对应的embedding表示形式,并将其导入至数据库中形成结构化的索引体系。这一环节对于后续查询效率至关重要。 #### 实现检索增强机制 设计合理的算法逻辑,使得当用户发起咨询请求时,系统能够快速定位最相关的背景信息片段作为辅助材料输入给LLM进行响应合成;同时保持对话流畅性和自然度不受影响。 ```python from dify import DifyClient import deepseek as ds client = DifyClient(api_key='your_api_key') model = ds.load_model('path_to_deepseek_r1') def get_context(query): embeddings = model.encode([query]) results = client.search(embeddings=embeddings, top_k=5) context = " ".join([r['text'] for r in results]) return context ``` 上述代码展示了如何利用Dify客户端API获取与查询语句相似度最高的几个条目,并将它们组合成一段连续的文字串供进一步分析使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值