近期,蚂蚁集团开源了一款名为KAG(Knowledge Augmented Generation)的知识增强生成框架,主要用于解决大语言模型(LLM)在专业领域知识服务中的局限性。KAG框架通过结合知识图谱和向量检索技术,显著提升了生成和推理性能,尤其在多跳问答任务中表现优异。
KAG 是基于 OpenSPG 引擎和大型语言模型的逻辑推理问答框架,用于构建垂直领域知识库的逻辑推理问答解决方案。KAG 可以有效克服传统 RAG 向量相似度计算的歧义性和 OpenIE 引入的 GraphRAG 的噪声问题。KAG 支持逻辑推理、多跳事实问答等,并且明显优于目前的 SOTA 方法。
核心功能与创新点
知识表示增强:KAG通过层次化的知识表示方式,使大语言模型更适应专业领域的知识处理需求。例如,它将非结构化文本转化为结构化的知识图谱,从而提升知识的可解释性和应用范围。
此外,KAG通过定义数据结构如概念类型、实体类型、关系类型等,可友好的表示知识框架,使得知识表示更加符合大语言模型的理解能力。
知识图谱与文本互索引:KAG实现了知识图谱与原始文本块之间的相互索引,这不仅提高了数据检索的精确度和效率,还增强了知识整合的能力。通过语义分块、信息注入和领域知识约束,KAG能够有效提升知识检索和表示的效率。
逻辑形式引导的混合推理引擎:KAG设计了一种逻辑符号引导的混合推理引擎,能够在知识逻辑层进行推理时,遇到无法解决的问题时转向检索层进行解答。这种机制显著提高了问题解决的召回率和准确性。
该推理引擎通过符号驱动方法生成可执行的逻辑查询表达式,并在必要时调用外部知识库进行补充,从而实现更复杂的推理任务。
基于语义的知识对齐:KAG利用语义对齐机制,通过构建开放世界知识图谱来增强模型的决策严谨性。这一机制确保了在复杂推理过程中,模型能够基于准确的知识做出合理的判断。另外,KAG还采用了基于概念的知识对齐技术,进一步提升了模型在专业领域中的表现。
KAG Model:KAG Model模块通过指令合成技术,使得小参数量的语言模型在接近大模型性能的同时,降低了与大型模型之间的耦合成本,这个模块特别适用于需要高效计算和低资源消耗的应用场景。
应用场景与效果
KAG框架已经在多个专业领域中展示了其优越性,特别是在电子政务和健康问答等场景中取得了显著的准确率提升。例如,在电子政务问答任务中,KAG达到了91.6%的准确率。在多跳问答任务中,KAG的表现也超越了现有的RAG方法,EM指标在两个数据集上均翻倍。
技术架构与开源信息
KAG框架基于蚂蚁集团自研的OpenSPG引擎开发,结合了图数据库TuGraph-DB作为底层存储引擎。这一架构不仅支持高效的知识存储与检索,还为开发者提供了灵活的定制化服务。目前,KAG已在GitHub上开源,开发者可以通过官方提供的文档和示例代码进行探索和应用。
总结
蚂蚁集团推出的KAG知识增强生成框架通过多方面的技术增强,显著提升了大语言模型在专业领域的推理能力和准确性。这一框架不仅解决了传统RAG方法在知识逻辑不敏感和推理能力不足的问题,还为未来在更多专业领域的应用奠定了基础。KAG的成功开源将进一步推动知识图谱与大语言模型结合的技术发展,并为行业提供更强大的知识服务工具。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。