写在前面
随着技术的发展,外部数据可以增强模型的专业性和时序相关性,并提高输出的可控性和可解释性。微软亚洲研究院的研究员们提出了一种基于查询需求分层的 RAG 任务分类法,从显式事实、隐式事实、可解释的推理、隐式推理4个层级出发,直指大模型应用在不同认知处理阶段所面临的难点和定制化的解决手段。
paper:https://arxiv.org/pdf/2409.14924
问题
-
RAG 任务分类法的核心是什么?
-
RAG 任务分类法对解决工程问题带来什么帮助?
-
RAG 任务分类法如何结合RAG工具提高任务效率?
四个级别,明确LLMs任务复杂度
RAG任务分类方法,根据所需的外部数据类型和任务的主要焦点,将用户查询分为四个层次:
• Level-1 显性事实:此类查询涉及直接从数据中提取明确存在的事实,无需进行任何形式的额外推理。这构成了最基础的查询类型,其中模型的主要任务是精确定位并提取相关信息。例如,“2024年夏季奥运会在哪里举行?”
• Level-2 隐性事实:这些查询要求揭示数据中隐含的事实,可能需要一些常识推理或简单的逻辑推断。信息可能分散在不同的数据片段中,或者需要通过简单的推理过程来获取。例如,“目前哪个国家正在举办堪培拉所在国家的执政党会议?”这个问题可以通过结合堪培拉位于澳大利亚的事实和当前执政党的信息来解答。
• Level-3 可解释的推理:在这一层级,查询不仅要求对事实的掌握,还要求模型能够理解并应用与数据背景密切相关的领域特定推理依据。例如,在制药领域,LLMs 需要解读美国食品药品监督管理局(FDA)的指导文件,以评估药品申请是否符合监管要求。在客户支持场景中,LLMs 必须遵循预定义的工作流程来有效响应用户查询。在医学领域,LLMs 可以开发成一个专门管理胸痛的专家系统,遵循权威的诊断手册和标准化指南。这种能力确保了 LLMs 的输出不仅在事实上正确,而且在上下文中也相关,且严格遵守监管和操作规范。
• Level-4 隐式推理:这一级别的查询进入了一个更具挑战性的领域,其中推理依据并未明确记录,而是需要通过分析历史数据中的模式和结果来推断。例如,在IT运营领域,LLMs 需要从云运营团队解决的历史事件中挖掘隐性知识,识别成功的策略和决策过程。在软件开发中,LLMs 必须从以往的调试错误记录中提取出指导性原则。通过整合这些隐含的推理依据,LLMs 提供的回答不仅准确,而且能够反映出经验丰富的专业人士的隐性知识和问题解决技巧。
将查询划分为不同层次,既体现了 LLMs 需要理解的复杂性和多样性,也指明了各个层次的关注点,如图2所示。前两个层级——显性事实和隐性事实,主要聚焦于事实信息的检索,无论是直接呈现的还是需要基本推理得出的。这些层级考验的是 LLMs 从数据中提取和综合信息以形成连贯事实的能力。与此相对,后两个层级——可解释的推理和隐式推理,则将重点转向了 LLMs 学习和应用数据背后逻辑的能力。这些层级要求更高层次的认知介入,LLMs 必须要么与专家的思维方式保持一致,要么从非结构化的历史数据中提炼出洞见。
对于显性事实查询,准确的回答依赖于在庞大的外部数据库中精确定位具体的外部数据信息;而对于隐性事实查询,答案通常需要从多个相互关联的事实中综合得出,因此,全面检索并整合有效信息成为了这一类查询的关键挑战。可解释的推理查询任务是将多样的外部逻辑关系输入大语言模型,并确保其精确遵循这些逻辑指导来生成回应;而对于隐式推理查询,从外部示例或知识库中提炼并识别出解决问题的策略则成为至关重要的任务。
不同层级解决方案
在处理显性事实查询时,其关键挑战在于如何在数据库中精确地定位事实,因此,基础的 RAG(Retrieval-Augmented Generation,检索增强生成)方法成为了首选策略。对于隐性事实查询,这类查询要求整合多个相关事实,所以采用迭代式的 RAG 方法或基于图结构、树结构的 RAG 实现更为适宜,因为它们能够同时检索独立事实并建立数据点之间的联系。在需要广泛数据互联的情况下,Text-to-SQL 技术则显得尤为重要,它可以通过数据库工具来增强外部数据的搜索能力。
针对可解释推理查询,运用提示调优和链式推理提示技术可以增强 LLMs 对外部指令的遵循度。而最具挑战性的隐藏推理查询,则需要从大量数据中自动提炼出问题解决策略。在这种情况下,离线学习、上下文学习以及模型的微调就成为了解决问题的关键手段。
总体而言,研究员们认为,开发者作为领域专家在着手开发特定的大语言模型应用之前深入洞察预期任务,明确相关查询的复杂性,并选取恰当的技术手段来解决问题十分必要。这些方法主要可以通过以下三种机制向 LLMs 注入知识,如图所示:
a) 根据查询需求,从领域数据中提取部分内容作为 LLMs 的上下文输入;
b) 训练一个规模较小的模型,该模型在特定领域数据上训练后,用于引导外部信息的整合,并最终输入至 LLMs;
c) 直接利用外部的领域知识对通用大语言模型进行微调,从而将其转化为领域专家模型。
回到问题
-
RAG 任务分类法的核心是什么?
根据任务的主要焦点,将用户查询分为四个层次,并根据层次,采用对应解决方案。
-
RAG 任务分类法对解决工程问题带来什么帮助?
将外部数据接入大模型问题具象化,提供解决思路。可根据任务快速构思解决思路。类似设计模式。同时,也为数据增强的研究提供了重要的参考价值
-
RAG 任务分类法如何结合RAG工具提高任务效率?
最近两年,出来很多RAG技术,向量模型、Rerank、RAPTOR、GraphRAG、MemoRAG等,这些技术主要解决到level2层级,对于level2以下任务可采用相应技术,MemoRAG也可以尝试解决level3层级问题,但是,隐含推理角度的任务效果一直待考验,CoT结合模型可以解决一些显示推理任务场景任务,Agentic RAG是个方向(外部工作流规划)。基础模型推理能力提升,也对任务效果提升有很大帮助(例如:openai o1,模型内部推理规划)。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。