专题解读| Graph Transformer 最新研究进展

图结构数据可以有效表示和建模显示世界中的任意交互关系,如社交网络、蛋白质网络和交通网络等,甚至以自然语言为代表的序列数据和以视觉为代表的网格数据也均可以通过“图”来进行建模表示。自 GCN[1] 出现以来,基于消息传递机制的图学习范式迅速成为了图机器学习领域的主流研究热点,然而过平滑[2]和过压缩[3]问题的存在使得基于消息传递的图神经网络无法叠加多层,使其感知范围只能局限于 2-3 跳邻居之内,大大限制了这类方法解决长范围依赖问题的能力。另一方面,Transformer 模型在自然语言处理以及计算机视觉领域取得的巨大成功也让众多研究者开始将目光转向 Graph Transformer 的研究中来。Graph Transformer 通过其全局注意力机制,自适应选择节点进行注意力计算,从而可以自然地避免过平滑、过压缩问题。同时,其全连接机制使得其可以打破固有的结构偏置,从而学习发现对下游任务更加重要的图结构。早期经典工作如 Gophormer[4]、Graphormer[5]、GraphGPS[6]等分别在节点级别和图级别任务上取得了一定了成果。接下来,我将对近期一些有代表性的 Graph Transformer 方法进行介绍和解读。

1. EXPHORMER

EXPHORMER[7] 是谷歌为了解决 Transformer 模型由于其 的时间空间复杂度导致难以扩展到大图上而提出的一种面向图数据的稀疏注意力机制。该方法发表在了 ICML 2023 上。具体来说,为了解决由于高复杂度导致的扩展问题,EXPHORMER 提出通过三种稀疏的注意力机制组合来实现近似的 Graph Transformer。

三种稀疏的注意力机制组合

  • 局部注意力机制:通过在原始图结构,即图 (a) 上计算注意力分数,来实现局部注意力机制。

  • 扩张图注意力机制:首先对原始图结构进行扩张形成扩张图 。如上图中的 (b),就是通过算法生成的每个节点的度均为 3 的扩张图。得到扩张图之后,可以基于扩张图的结构进行注意力计算。

  • 全局注意力机制:传统的 Graph Transformer 方法为了获得全局信息需要进行全连接的注意力计算,从而导致巨大的资源开销。EXPHORMER 通过引入虚拟节点和虚拟连接,如图 ©,并计算每个节点与虚拟节点之间的注意力,有效解决了这一问题。

通过这种方式,EXPHORMER 实现了以较低的资源开销捕获全局信息,同时保证了对原始图结构的有效学习。作者通过理论证明了提出方法的有效性并进行了大量的实验验证。

实验结果-1

实验结果-2

2. SGFormer

SGFormer[8] 是上海交通大学的研究团队提出的一种用于大图表示学习 Graph Transformer,该研究成果成功发表在了 NeurIPS 2023 上。首先,作者定义了一种简化的全局注意力机制:

这种注意力机制抛弃了传统注意力计算中的 SoftMax 函数,从而使得可以先进行 的计算,而不用先计算 的 的注意力矩阵,大大减小了内存开销。同时,作者还理论证明了单层单头的全局注意力机制就足够解决节点分类任务。除此之外,作者还引入一个 GNN 来捕获图的局部信息。

SGFormer_结构_

通过该架构,作者实现了局部信息和全局信息的融合,并可以高效泛化到大规模网络数据集上。实验结果表明该方法相比基线模型可以有效提升模型节点分类准确率。

SGFormer-实验结果1

SGFormer-实验结果2

值得注意的是,这是首个成功将 Graph Transformer 应用到超大规模网络数据集 ogbn-papers100M 的模型。

3. POLYNORMER

POLYNORMER[9] 是康奈尔大学的团队提出的一种多项式表达能力的 Graph Transformer,该工作成功发表在 ICLR 2024 上。该方法将多项式网络的思想引入到 Graph Transformer 中,从而大大增强了模型的性能。

POLYNORMER-多项式表达能力的例子

如图,是一个多项式网络的例子,通过一个点积运算,使得输出的表示不仅包含 这样的一阶项,还包含了 这样的二阶项。通过继续叠加多层这样的点积运算,可以实现更高阶的多项式。将该想法引入到 Graph Transformer 中,得到了如下的模型架构:

POLYNORMER-架构图

除了引入多项式网络外,Polynormer 还提出将常用的局部注意力与全局注意力直接组合的方式变为先计算局部注意力再计算全局注意力的方式,避免了直接组合局部和非局部信息可能带来的风险。实验结果表明该方法在同配图、异配图以及大图数据集上都取得了优越的性能表现。

POLYNORMER-实验1

POLYNORMER-实验2

POLYNORMER-实验3

4. Gradformer

Gradformer[10] 是武汉大学的团队提出的一种引入指数衰减掩码的 Graph Transformer,使其在实现全局感知捕获全局信息的同时更加关注局部结构信息,该工作发表于 IJCAI 2024。具体来说,该方法首先需要计算最短路径距离,然后学习得到一个随最短路径距离增长而指数衰减的掩码矩阵,再根据该掩码矩阵修改注意力矩阵。

Gradformer

实验结果表明该方法相比传统的全局注意力能够更好的结合图结构信息,并在下游任务上实现性能提升。

Gradformer 实验结果

5. CoBFormer

CoBFormer[11] 是我们团队发表在 ICML 2024 上一篇对 Graph Transformer 进行分析的文章。我们发现了 Graph Transformer 中存在过全局化问题,即过多的注意力分数被分配给了距离较远的节点,而往往更加有用的相距较近的节点相对来说被忽视。

我们理论证明了过全局化问题会导致模型在节点分类任务上难以取得足够好的性能。基于此发现,我们提出一种两级全局注意力机制,并配合以协同训练方式学习图的局部结构信息。

CoBFormer 架构图

我们首先对原图采用图划分算法划分出一系列子图(簇),然后在子图内部进行注意力计算,再对每个子图内的节点表征进行平均池化得到子图表征,从而计算子图之间的注意力。同时,我们用一个 GCN 来捕获图的局部信息,再采用协同训练方式,让 GCN 与注意力模块相互监督学习。我们理论证明了该方法可以有效近似全局注意力机制并实现更好的分类性能。大量实验也证明了我们方法的有效性。

CoBFormer 实验结果

总结

本文通过对最近一年内有关 Graph Transformer 的部分顶会论文进行了简要的解读,可以看出目前该领域内的主要研究问题主要集中于如下两个方面:

  • 高效性:如何克服 Transformer 架构的高复杂性,从而有效应用到大规模网络上。

  • 局部性:由于 Graph Transformer 的过全局化问题的存在,如何缓解该问题,促进其对局部信息的感知。

除此之外,还有很多方法致力于提出更具有表达能力的位置/结构编码[12, 13],从而向 Graph Transformer 中注入更有效的结构信息,使其在 WL 图同构测试中取得更好地结果,从而有效区分图级别任务中同分异构体等难题。该方向也是现如今一大研究热点,值得更多的探讨。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### Graph Transformer 架构 Graph Transformer 结合了传统Transformer的强大编码能力和图神经网络处理复杂关系的能力[^1]。具体来说,Graph Transformer引入了一种机制,在自注意力层中考虑节点间的关系。 #### 自注意力机制中的图结构融合 在标准的Transformer模型里,输入序列被线性化处理;而在Graph Transformer中,则允许直接利用图数据作为输入。对于给定的一组节点及其邻接矩阵A,Graph Transformer能够计算每一对节点间的相似度得分,并据此调整特征向量权重: ```python import torch from torch_geometric.nn import GCNConv, GATv2Conv class GraphTransformerLayer(torch.nn.Module): def __init__(self, input_dim, output_dim): super(GraphTransformerLayer, self).__init__() self.gat_conv = GATv2Conv(input_dim, output_dim) def forward(self, x, edge_index): return self.gat_conv(x, edge_index) ``` 此过程不仅保留了原始图的信息,还增强了对局部上下文的理解能力[^2]。 ### 应用场景 Graph Transformer在网络科学、推荐系统等领域有着广泛的应用前景。例如,在社交网络分析方面,可以用来预测用户行为模式或发现社区结构;在生物信息学研究中可用于蛋白质相互作用预测等任务。此外,由于其灵活性和强大的表达力,也被应用于自然语言处理领域内的依存句法树解析等问题上[^4]。 ### 实验验证与优势展示 实验表明,相比于传统的基于随机游走的方法以及仅依赖于拓扑连接性的简单聚合方案,采用Graph Transformer框架构建的模型能够在多种下游任务取得更好的效果。这主要得益于该类模型能更有效地捕捉到复杂的交互规律并自动适应不同的应用场景需求[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值