【滤波跟踪】用于红外测距仪演示床的分布式卡尔曼滤波器附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

摘要: 随着物联网(IoT)和智能家居技术的快速发展,高精度室内定位变得越来越重要。红外测距仪作为一种低成本、易部署的室内定位方案,受到了广泛的关注。然而,单个红外测距仪的精度受到噪声和视距(LOS)条件的限制。为了提高定位精度和鲁棒性,本文提出了一种用于红外测距仪演示床的分布式卡尔曼滤波器(Distributed Kalman Filter, DKF)。该滤波器利用多个红外测距仪的数据融合优势,通过分布式架构降低计算复杂度,提升系统可扩展性和容错性。本文详细阐述了DKF的结构、算法流程以及在红外测距仪演示床上的应用,并探讨了其优势和局限性。

关键词: 分布式卡尔曼滤波器,红外测距仪,室内定位,数据融合,物联网

1. 引言

室内定位技术在导航、监控、机器人、医疗保健等领域具有广泛的应用前景。传统的全球定位系统(GPS)在室内环境下的性能受到严重限制,因此需要开发适用于室内环境的定位技术。近年来,基于Wi-Fi、蓝牙、超宽带(UWB)和红外(IR)等技术的室内定位方法层出不穷。其中,红外测距仪因其低成本、低功耗、易于部署等优点,成为一种具有吸引力的室内定位解决方案。

然而,红外测距仪的精度容易受到环境光、目标反射率、非视距(NLOS)传播以及传感器自身噪声的影响。单个红外测距仪难以保证定位的精度和鲁棒性。为了解决这个问题,一种有效的方法是采用数据融合技术,将多个红外测距仪的测量结果进行整合,从而降低误差、提高精度并增强系统的可靠性。

卡尔曼滤波器(Kalman Filter, KF)是一种最优的递归滤波器,广泛应用于状态估计和数据融合领域。在多传感器融合的应用中,扩展卡尔曼滤波器(Extended Kalman Filter, EKF)和无迹卡尔曼滤波器(Unscented Kalman Filter, UKF)等非线性卡尔曼滤波器被广泛采用。然而,集中式卡尔曼滤波器(Centralized Kalman Filter, CKF)需要将所有传感器数据传输到中央处理单元进行统一处理,这导致了较高的通信带宽需求和计算复杂度。尤其是在传感器节点数量较多的情况下,CKF容易成为系统瓶颈,并且缺乏可扩展性和容错性。

为了克服CKF的局限性,分布式卡尔曼滤波器(DKF)应运而生。DKF将计算任务分配到各个传感器节点,节点之间只进行局部信息的交互,从而降低了通信带宽需求和计算复杂度。DKF具有良好的可扩展性和容错性,能够适应传感器节点数量的变化和节点故障的情况。

本文提出了一种用于红外测距仪演示床的DKF,旨在利用多个红外测距仪的数据融合优势,提高定位精度和鲁棒性。本文的结构如下:第二部分介绍了红外测距仪的原理和误差模型;第三部分详细阐述了DKF的结构和算法流程;第四部分描述了DKF在红外测距仪演示床上的应用;第五部分进行了实验验证和结果分析;最后,第六部分总结全文并展望未来研究方向。

2. 红外测距仪原理与误差模型

2.1 红外测距仪原理

红外测距仪通常采用三角测量法或飞行时间(Time-of-Flight, TOF)法进行距离测量。本文假设采用的是基于三角测量法的红外测距仪。三角测量法利用红外发射器和接收器之间的基线距离以及测量得到的角度信息,通过三角函数关系计算目标距离。

如图1所示,红外发射器发射红外光束,光束照射到目标物体后反射,被红外接收器接收。通过测量发射角度α和接收角度β,可以计算得到目标距离d。

[此处应插入图1:三角测量法原理示意图]

目标距离d的计算公式如下:

d = b / tan(α + β)

其中,b为红外发射器和接收器之间的基线距离。

2.2 红外测距仪误差模型

红外测距仪的误差主要来源于以下几个方面:

  • 噪声误差:

     由于传感器本身的噪声和电路噪声的影响,角度测量存在一定的误差。

  • 环境光干扰:

     强烈的环境光会干扰红外接收器对反射光信号的检测,导致测量误差。

  • 目标反射率影响:

     不同材料的目标对红外光的反射率不同,这会影响接收器接收到的信号强度,进而影响角度测量。

  • 非视距传播:

     当目标物体被遮挡时,红外光发生反射、折射或散射,导致测量距离偏大。

为了对红外测距仪的误差进行建模,可以将其表示为一个高斯噪声模型:

d_measured = d_true + n

其中,d_measured为测量距离,d_true为真实距离,n为均值为0、方差为σ^2的高斯噪声。实际应用中,噪声方差σ^2需要根据实际情况进行标定。

3. 分布式卡尔曼滤波器结构与算法

3.1 DKF结构

本文提出的用于红外测距仪演示床的DKF采用联邦滤波器结构(Federated Kalman Filter, FKF)。FKF是一种常用的DKF架构,其主要特点是将全局状态估计分解为多个局部状态估计,并通过主滤波器进行信息融合。

如图2所示,DKF由多个局部滤波器和一个主滤波器组成。每个局部滤波器对应一个红外测距仪,负责处理该测距仪的测量数据,并估计局部状态。主滤波器负责接收所有局部滤波器的状态估计和协方差信息,进行全局状态估计,并将更新后的状态估计和协方差信息反馈给局部滤波器。

[此处应插入图2:分布式卡尔曼滤波器结构示意图]

3.2 DKF算法流程

DKF的算法流程如下:

  1. 局部滤波器:

    • 预测步骤:

       根据状态转移方程,预测下一时刻的状态估计和协方差。

    • 更新步骤:

       利用红外测距仪的测量数据,更新状态估计和协方差。

    • 信息共享:

       将更新后的状态估计和协方差信息发送给主滤波器。

  2. 主滤波器:

    • 信息融合:

       接收所有局部滤波器的状态估计和协方差信息,进行加权平均,得到全局状态估计和协方差。权重通常根据局部滤波器的协方差大小进行确定,协方差越小,权重越大。

    • 信息反馈:

       将更新后的全局状态估计和协方差信息反馈给局部滤波器。

  3. 重复步骤1和步骤2,直到达到预定的迭代次数或满足收敛条件。

具体算法步骤如下:

  • 状态方程:

     假设目标物体在二维平面内运动,状态向量定义为 x = [x_position, y_position, x_velocity, y_velocity]^T。状态方程可以表示为:

x_{k+1} = A x_k + w_k

其中,A为状态转移矩阵,w_k为过程噪声。

  • 观测方程:

     红外测距仪的观测方程可以表示为:

z_i,k = h_i(x_k) + v_i,k

其中,z_i,k为第i个红外测距仪在k时刻的测量距离,h_i(x_k)为观测函数,v_i,k为测量噪声。观测函数h_i(x_k)根据红外测距仪的位置和目标位置计算得到预测距离。

  • 局部滤波器算法:

    其中,x_{i,k|k-1}和P_{i,k|k-1}分别为第i个局部滤波器在k时刻的预测状态估计和协方差,x_{i,k|k}和P_{i,k|k}分别为更新后的状态估计和协方差,K_{i,k}为卡尔曼增益,H_i为观测矩阵,Q为过程噪声协方差,R_i为测量噪声协方差,I为单位矩阵。

    • K_{i,k} = P_{i,k|k-1} H_i^T (H_i P_{i,k|k-1} H_i^T + R_i)^{-1}

    • x_{i,k|k} = x_{i,k|k-1} + K_{i,k} (z_{i,k} - h_i(x_{i,k|k-1}))

    • P_{i,k|k} = (I - K_{i,k} H_i) P_{i,k|k-1}

    • x_{i,k|k-1} = A x_{i,k-1|k-1}

    • P_{i,k|k-1} = A P_{i,k-1|k-1} A^T + Q

    • 预测:

    • 更新:

  • 主滤波器算法:

    其中,x_{global,k|k}和P_{global,k|k}分别为全局状态估计和协方差,N为局部滤波器的数量,w_i为第i个局部滤波器的权重,通常设置为 w_i = P_{global,k|k} P_{i,k|k}^{-1}。

    • 信息反馈:

       将x_{global,k|k}和P_{global,k|k}反馈给每个局部滤波器,更新其状态估计和协方差。具体更新方式取决于DKF的具体实现方案,例如可以采用协方差交叉(Covariance Intersection, CI)等方法。

    • x_{global,k|k} = ∑_{i=1}^N w_i x_{i,k|k}

    • P_{global,k|k} = (∑_{i=1}^N P_{i,k|k}^{-1})^{-1}

    • 信息融合:

4. DKF在红外测距仪演示床上的应用

4.1 系统架构

本文提出的DKF应用于一个基于红外测距仪的演示床上。该演示床由四个红外测距仪和一个移动平台组成。每个红外测距仪负责测量移动平台到其自身的距离。移动平台搭载一个红外发射器,用于向红外测距仪发射信号。

[此处应插入图3:红外测距仪演示床系统架构示意图]

每个红外测距仪对应一个局部滤波器,负责处理该测距仪的测量数据,并估计移动平台的位置和速度。主滤波器负责接收所有局部滤波器的状态估计和协方差信息,进行全局状态估计,并将更新后的状态估计和协方差信息反馈给局部滤波器。

4.2 硬件平台

红外测距仪采用市场上常见的型号,例如Sharp GP2Y0A21YK。每个红外测距仪连接到一个微控制器,例如Arduino Uno。Arduino Uno负责采集红外测距仪的测量数据,并将数据传输到上位机。上位机负责运行DKF算法,并将估计的移动平台位置显示在屏幕上。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值