【PLL】非线性响应——实用设计方面

  • type 1与 type 2之间的差距
  • 实际设计方面的问题
    • CPPLL瞬态响应
    • 数字锁相环的数字滤波器基本结构

频率阶跃(type 1 和 type 2锁相环)

(a)类型1 锁相环(b)类型2 锁相环
  • 当输入端频率变化为 Δ𝜔 时,类型 1 PLL 生成静态相位误差

  • VCO把电压转换成频率,所以频率阶跃Δ𝜔,则静态电压变化 \frac{\Delta \omega}{K_{vco}}

  • LPF没有积分器,无法将DC电压信息存储到LPF中

  • 所以 type 1锁相环在VCO输入端提供DC偏移电压的唯一方式是引入静态相位偏移,偏移为\frac{\Delta \omega}{K}

  • type 2有积分器,可以把DC电压存储到积分器中
  • type 2可以分为比例路径、积分路径
  • DC信息存储到积分路径,
  • 比例路径不必再产生静态误差,向VCO提供直流信息
  • 比例路径,类似于小信号路径来设置放大器增益
  • 积分路径,类似于大信号路径来设置放大器的直流 工作点

状态变量模型

  • 有没有可能,80%的DC信息存储在积分路径中,而剩余的DC由比例增益路径提供静态相位误差。
  • 使用状态变量模型。 与仅考虑输入和输出之间的关系的传递函数模型不同,状态变量模型可以对具有积分器的反馈系统施加额外的约束
  • 为了使反馈系统稳定,积分器的输入在稳定状态下必须为零。 否则,积分器随着时间的推移累积非零输入,输出将饱和。
  • 在状态变量模型中,我们通过积分器的输出定义状态变量,并施加状态变量在稳定状态下应保持恒定的约束。
  • PLL的状态变量描述有助于理解内部系统参数,例如稳定状态下VCO的控制电压,这是无法用输入/输出(I/O)传递函数描述的。

如图所示是2阶2型CPPLL状态变量模型,作为积分器输出\theta _e(t),V_c(t)稳定状态下保持稳定

状态变量方程:

\left\{\begin{aligned} \theta _e(t)& =-K_{vco} \int (V_c(t)+I_{CP}R_1 \theta _e(t))+\theta _i(t) \\ V_c(t) & =\frac{I_{CP}}{C_1} \int \theta _e(t) \end{aligned}\right.

对左右微分:

\left\{\begin{aligned} \frac{\theta _e(t)}{dt}& =-K_{vco}V_c(t)-K_{vco}I_{CP}R_1 \theta _e(t)+\frac{\theta _i(t)}{dt} \\ \frac{V_c(t)}{dt} & =\frac{I_{CP}}{C_1} \theta _e(t) \end{aligned}\right.


当系统稳态时候,稳态变量为常数,即微分为零:

\left\{\begin{aligned} \frac{\theta _{e,state}(t)}{dt}& =0=-K_{vco}V_{c,state}(t)-K_{vco}I_{CP}R_1 \theta _{e,state}(t)+\frac{\theta _i(t)}{dt} \\ \frac{V_{c,state}(t)}{dt} & =0=\frac{I_{CP}}{C_1} \theta _{e,state}(t) \end{aligned}\right.

解得

\left\{\begin{aligned} V_{c,state} & = \frac{1}{K_{vco}}\frac{d \theta _i(t)}{dt} \\ \theta_{e,state} &=0 \end{aligned}\right.



当输入频率阶跃

\theta _i(t)=\Delta \omega t \Rightarrow V_{c,state}=\frac{\Delta \omega}{K_{vco}}

电容中存储的稳态电压完全代表了将 VCO 频率调整相同量的输入频率变化所需的等效直流电压.

CPPLL中的两路控制

RC滤波器在type 2 PLL中的应用

  • 每个参考周期,R1上的CP电流产生瞬时电压,其脉冲宽度与相位误差成正比,形成【比例路径】
  • 根据相位误差的极性,正电荷or负电荷会累积在C1,形成【积分路径】

在type 2 PLL中,大 C1 使得比例路径占主导,因为 Vc(t) 不会随大 C1 变化太大。

这种情况下,环路是过阻尼,环路带宽主要由比例增益路径决定。

阻尼比为 2 的过阻尼三阶 2 型 CP-PLL 的模拟瞬态稳定行为

如图所示,VCO输入电压Vctr(t),电容电压Vc(t)。

  • 没有观察到过冲,或纹波
  • Vc(t)的稳定时间,比Vctrl(t)时间长的多

将PLL的瞬态行为定义为3个区域:

  1. 区域1,Vctr(t)和Vc(t)都没有稳定
  2. 区域2,Vctr(t)稳定,Vc(t)不稳定
    1. 区域2显示近锁状态,【比例路径】引起的静态相位偏移补偿调谐VCO所需剩余直流电压
    2. 区域2,被认为是type 1 和 type 2 环路的中间态
  3. 区域3,Vctr(t)和Vc(t)都稳定
    1. 区域3,完全稳定,PLL相位跟踪由【比例路径】控制
    2. 监视 Vctr(t) 不是评估 2 型 CP-PLL 的稳定或静态相位误差性能的好方法,特别是对于过阻尼环路

换一种看法,

  • Vc(t)代表PLL频率采集,也想PLL的DC工作点一样发挥作用
  • Vctr(t) - Vc(t) 执行小信号跟踪
  • Vc(t)完全稳定之后,可以正确评估 小信号参数:【相位噪声、参考杂散、静态相位误差】

双电荷泵控制

 由于VCO控制电压Vctr(t)可以分解为Vc(t)和R1两端的电压,因此也可以实现双电荷泵的双路径控制。

  • 为了避免共模电压,电荷泵、LPF采用差分拓扑
  • 双电荷泵,可以额外控制两个电荷泵电流,环路参数提供的灵活性

DPLL中双环路控制

了解【两个独立路径的 type 2 PLL】非常有用。

  • 如果滤波器传递函数作为一个整体在数字环路滤波器(DLF)中实现,则DLF需要大量的比特来实现精确的频率控制。
  • 很多比特,则延时很长,很难实现高频率分辨率
  • 例如,大于14bit分辨率,则比例路径中少量比特实现快速跟踪

  • 在DLF中,累加器的作用类似于CP-PLL的积分电容器C1。 数字系数𝛽设置积分路径的增益,类似于CP-PLL中的1/C1
  • 数字系数 𝛼 设置比例增益路径的增益,类似于 CP-PLL 中的 R1

CPPLL压摆率

  • 过阻尼 CP-PLL 的稳定时间受环路滤波器的积分路径(即积分电容 C1)的显着影响
  •  如果我们只考虑 PLL 锁定范围之外的频率采集,则 CP-PLL 的大信号瞬态响应主要由 C1 的充电(或放电)时间决定,因为 PFD 使电荷泵能够产生升压或降压。 脉冲取决于频率差。

 

  • 频率采集模式下的 CP-PLL 可以被建模为一个两级放大器
  • 其转换速率由 CP 电流 ICP 和 C1 决定。
  • 如图所示, CP-PLL 的压摆率可以像运算放大器一样定义
  •  CP-PLL 的压摆率基于频率与时间比
    运算放大器的压摆率是电压与时间比

  • 为了简单起见,假设 CP 电流在给定频率方向上完全导通。
  • PLL 的最大转换速率 SRPLL 可以定义为 SR_{PLL}=\frac{I_{CP}}{C_1}K_{vco}[Hz/s]

压摆率如何影响PLL锁定时间:

频率稳定函数:f(t)=f_o(1-e^{-\frac{t}{\tau }})

  • f_o:目标频率
  • \tau:PLL环路常数,即 环路增益K的倒数

当没有压摆率限制时:

\frac{I_{CP}}{C_1}K_{vco}>\frac{df}{dt}|_{t=0}=\frac{f_o}{\tau}=f_o \sqrt{\frac{I_{CP}}{C_1}\frac{K_vco}{N}} \\ \\ \Rightarrow \frac{I_{CP}}{C_1}>\frac{f_o^2}{NK_{vco}}

如果不满足上述条件,则应在稳定时间内考虑转换速率 。


 

则频率表达式:

\begin{aligned} f(t) =\begin{cases} \frac{I_{CP}K_{vco}}{C_1}t,t\leq t_1 \\ f_{t1}+(f_0-f_{t1})(1-e^{-\frac{t}{\tau}}),t>t_1 \end{cases} \end{aligned}

f_{t1}=\frac{I_{CP}K_{vco}}{C_1}t_1

则锁定范围内,PLL 稳定在频率误差 f𝜀 内的时间

(f_o-f_{t1}e^{-\frac{t}{\tau}})<f_{\varepsilon } \Rightarrow t>ln(\frac{f_o-f_{t1}}{f_{\varepsilon }}) \tau

 所以,总的稳定时间为

t_{settle}=t_1+ln(\frac{f_o-f_{t1}}{f_{\varepsilon }})\tau

PFD开启时间影响

  • 当 PFD 在周跳期间用作频率检测器时,复位延迟可能会导致增益泄漏
  • 随着比较频率的增加,增益泄漏问题变得更加显着,并且频率检测的效率在高频处进一步降低。
  • 当考虑非线性稳定时间时,需要将PFD复位延迟的影响作为一个参数来考虑
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值