Yolov8小目标检测(5):SEAM注意力机制,提升遮挡小目标检测性能

本文介绍了如何利用SEAM和MultiSEAM注意力机制改进YOLOv8,以解决红外弱小目标检测中的遮挡问题。通过这些机制,map@0.5的性能从0.755提升到0.785。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 💡💡💡本文改进:SEAM注意力机制,较好的解决了小目标中遮挡问题;

SEAM |   亲测在红外弱小目标检测涨点明显,map@0.5 从0.755提升至0.785

💡💡💡Yolo小目标检测,独家首发创新(原创),适用于Yolov5、Yolov7、Yolov8等各个Yolo系列,专栏文章提供每一步步骤和源码,带你轻松实现小目标检测涨点

💡💡💡重点:通过本专栏的阅读,后续你可以结合自己的小目标检测数据集,在网络不同位置(Backbone、head、detect、loss等)进行魔改,实现小目标涨点和创新!!!

专栏介绍:

✨✨✨解决小目标检测难点并提升小目标检测性能;

🚀🚀🚀小目标、遮挡物性能提升和创新;

💡💡💡 工业界小目标检测性能提升和部署可行性;

🍉🍉🍉持续更新中,定期更新不同数据集涨点情况;

目录

1. 红外弱小目标数据集

2.遮挡物检测简介 

2.1 Separated and Enhancement Attention Module (SEAM)

 2.2 MultiSEAM

2.3 遮挡感知排斥损失

2.4YoloV8加入  SEAM、MultiSEAM注意力机制

2.5 SEAM、MultiSEAM加入加入modules.py中:

 2.6  SEAM、MultiSEAM加注册tasks.py中:

2.7 SEAM、MultiSEAM修改对应yaml

### YOLOv8目标检测中的遮挡问题改进方法 为了提高YOLOv8模型在目标被部分或完全遮挡情况下的检测能力,可以通过引入注意力机制以及特定架构调整实现性能优化。以下是几种有效的改进方式: #### 1. **SEAM 注意力机制** SEAM(Spatial Enhanced Attention Mechanism)是一种空间增强注意力机制,能够突出图像中重要的特征区域,从而改善模型对遮挡目标的识别效果[^1]。 具体来说,在YOLOv8网络结构中加入SEAM模块后,该模块会自适应地分配权重给不同位置的空间特征图,使得模型更加关注未被遮挡的目标部位。 ```python import torch.nn as nn class SEAM(nn.Module): def __init__(self, channel, reduction=16): super(SEAM, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Sequential( nn.Linear(channel, channel // reduction), nn.ReLU(inplace=True), nn.Linear(channel // reduction, channel), nn.Sigmoid() ) def forward(self, x): b, c, _, _ = x.size() y = self.avg_pool(x).view(b, c) y = self.fc(y).view(b, c, 1, 1) return x * y.expand_as(x) ``` 此代码定义了一个简单的SEAM模块,可嵌入到YOLOv8的颈部(neck)或其他关键层中以提升表现[^2]。 --- #### 2. **MultiSEAM 多尺度融合策略** 除了单尺度的SEAM外,还可以采用多尺度版本——即MultiSEAM。它通过对多个分辨率下提取出来的特征施加不同的注意力建模操作,进一步增强了对于复杂场景中小目标或者严重遮挡对象的理解能力。 这种技术特别适合于那些存在大量大小不一且可能相互重叠的对象的应用场合,比如交通监控视频分析等。 --- #### 3. **速度估算辅助训练** 当涉及到动态环境中的运动物体时,结合速度信息可以帮助缓解因快速移动而导致的部分遮蔽现象带来的负面影响。例如,在自动驾驶领域内,通过预测每辆车的速度参数作为额外输入参与到最终决策过程中去,则即使某些时刻由于视角变化等原因造成局部不可见的情况发生,也依然可以根据历史轨迹推断出大概率存在的实体所在范围[^3]。 这种方法不仅有助于减少误报漏检概率,同时也为后续高层次任务提供了更丰富的上下文线索支持。 --- #### 总结 综上所述,针对YOLOv8中存在的目标遮挡难题,可以从以下几个方面入手加以改良:一是运用诸如SEAM这样的先进注意力算法强化局部敏感度;二是探索像MultiSEAM这样兼顾全局视野与细节刻画的新颖设计思路;三是尝试融入外部物理量测量成果如车速评估之类的数据源扩充感知维度。这些措施共同作用之下有望显著促进实际应用场景里的整体效能指标达成预期水平以上。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI小怪兽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值