YOLOv5涨点改进:轻量级的 Mixed Local Channel Attention (MLCA),加强通道信息和空间信息提取能力

109 篇文章 ¥199.90 ¥299.90
本文介绍了Mixed Local Channel Attention (MLCA)模块,它结合通道和空间信息,提升网络表达能力。MLCA在MobileNet-Attention-YOLO(MAY)中表现出色,对比SE和CA,分别在PASCAL VOC和SMID数据集上提升1.0%和1.5%的mAP。将MLCA引入YOLOv5的步骤包括在models/attention/MLCA.py新建模块,修改yolo.py注册,以及配置yolov5s_MLCA.yaml和yolov5s_C3_MLCA.yaml。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  💡💡💡本文独家改进:一种轻量级的 Mixed Local Channel Attention (MLCA) 模块,该模块考虑通道信息和空间信息,并结合局部信息和全局信息以提高网络的表达效果

如何引入到YOLOv5

1)作为注意力机制使用;2)与c3结合使用;

💡💡💡Yolov5/Yolov7魔术师,独家首发创新(原创),适用于Yolov5、Yolov7、Yolov8等各个Yolo系列,专栏文章提供每一步步骤和源码,轻松带你上手魔改网络

💡💡💡重点:通过本专栏的阅读,后续你也可以自己魔改网络,在网络不同位置(Backbone、head、detect、loss等)进行魔改,实现创新!!!

专栏介绍:

✨✨✨原创魔改网络、复现前沿论文,组合优化创新

🚀🚀&#x

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI小怪兽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值