本篇文章将介绍一个新的改进机制——MLCA,并阐述如何将其应用于YOLOv11中,显著提升模型性能。首先,我们将解析MLCA他做了什么,MLCA使结合了通道信息和空间信息,以及局部和全局信息,以提高目标检测网络的表现,同时保持模型的轻量化。随后,我们会详细说明如何将该模块与YOLOv11相结合,展示代码实现细节及其使用方法,最终展现这一改进对目标检测效果的积极影响。
代码:https://github.com/tgf123/YOLOv8_improve/blob/master/YOLOv11.md
1. 混合局部通道注意力机制MLCA结构介绍
MLCA(混合局部通道注意力)是一种轻量级的注意力机制,旨在提高目标检测网络的性能。它结合了局部和全局特征以及通道和空间特征的信息,以增强网络对有用特