YOLO11改进-注意力-引入混合局部通道注意力机制(MLCA)

        本篇文章将介绍一个新的改进机制——MLCA,并阐述如何将其应用于YOLOv11中,显著提升模型性能。首先,我们将解析MLCA他做了什么,MLCA使结合了通道信息和空间信息,以及局部和全局信息,以提高目标检测网络的表现,同时保持模型的轻量化。随后,我们会详细说明如何将该模块与YOLOv11相结合,展示代码实现细节及其使用方法,最终展现这一改进对目标检测效果的积极影响。
代码:
https://github.com/tgf123/YOLOv8_improve/blob/master/YOLOv11.md

1. 混合局部通道注意力机制MLCA结构介绍   

          MLCA(混合局部通道注意力)是一种轻量级的注意力机制,旨在提高目标检测网络的性能。它结合了局部和全局特征以及通道和空间特征的信息,以增强网络对有用特

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值