肺癌是一种常见且致命的癌症类型,早期预测患者的生存率对于医学决策和治疗规划至关重要。传统的生存率预测方法通常基于统计模型和医学专业知识,但这些方法往往受到数据复杂性和样本大小的限制。深度学习模型,特别是长短时记忆网络(LSTM)和Transformer,已经在医学图像分析和生存率预测领域表现出卓越的性能。本博客将向您展示如何使用这两种深度学习模型来进行肺癌患者的生存率预测,提供清晰的思路和相应的Python代码。
第一部分:数据收集与准备
在进行肺癌生存率预测之前,我们需要获取包含医学影像和患者数据的数据集。这些数据可以来自医院、研究机构或医学影像数据库。为了简化示例,我们将使用一个虚构的医学影像和患者数据集。
1.1 数据集介绍
我们的数据集包括以下信息:
- 医学影像数据(medical_images):包括CT扫描图像。
- 患者数据(patient_data):包括患者的年龄