一起自学SLAM算法:12.4 导航系统面临的一些挑战

本文介绍了机器人自主导航系统面临的挑战,包括立体障碍物的探测问题,透明或反射表面造成的传感器失效,以及全局定位丢失对路径规划的影响。探讨了这些问题对现有导航系统的影响和解决思路。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

连载文章,长期更新,欢迎关注:


写在前面

第1章-ROS入门必备知识

第2章-C++编程范式

第3章-OpenCV图像处理

第4章-机器人传感器

第5章-机器人主机

第6章-机器人底盘

第7章-SLAM中的数学基础

第8章-激光SLAM系统

第9章-视觉SLAM系统

第10章-其他SLAM系统

第11章-自主导航中的数学基础

第12章-典型自主导航系统

        12.1 ros-navigation导航系统

        12.2 riskrrt导航系统

        12.3 autoware导航系统

        12.4 导航系统面临的一些挑战

第13章-机器人SLAM导航综合实战


通过以上3个导航系统的学习,大家对机器人自主导航系统的工作原理一定不陌生了。虽然这些导航系统能很容易就在机器人中运行起来,但目前的这些导航系统还面临不少问题的挑战,下面列举一些比较有代表性的问题。

立体障碍物是机器人导航中很头疼的一个问题,因为2D激光雷达只能扫描某个平面内的障碍物,对于高于或低于扫描平面的障碍物是无法探测的。比如一个很矮的扫地机器人能从桌子底下穿过去,而在扫地机器人上安装一个较高的货架后就会导致碰撞。很自然会想到在机器人不同高度不同方向都装上传感器,这样就能避免因个别传感器探测盲区而发生碰撞了。但将机器人的全身都覆盖上传感器显然不现实,并且传感器本身也有探测距离和视角的盲区问题。

玻璃类型的透明障碍物、镜面反射障碍物、场景多径效应、强光烟雾干扰等因素,都会导致激光雷达或相机的探测失灵。在这种情况下,如何保证机器人的安全也是个棘手的问题。另外一些特殊的情况,比如机器人在下斜坡时地面如何从障碍描述中分离也是个问题。

还有就是路径规划和轨迹跟踪都强依赖于全局定位,当机器人全局定位丢失后,路径规划和轨迹跟踪将直接奔溃,那么导航系统的稳定性怎么保证也是个大问题。

源码仓库

参考文献

【1】 张虎,机器人SLAM导航核心技术与实战[M]. 机械工业出版社,2022.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值