1. 引言
目标检测(Object Detection)是计算机视觉的重要任务之一,广泛应用于自动驾驶、视频监控、机器人视觉等领域。YOLO(You Only Look Once)系列作为目前最流行的目标检测算法之一,以其实时性强、精度高、部署便捷的特点受到开发者和研究人员的广泛关注。
本教程将详细介绍 YOLOv8 目标检测的基本概念、数据集准备、模型训练、超参数调优及推理部署,让你能真正掌握 YOLOv8,并应用到实际项目中。
2. YOLOv8 介绍与安装
2.1 什么是 YOLOv8?
YOLOv8 由 Ultralytics 团队发布,是 YOLO 系列的最新版本,主要特点包括:
- 更强的模型结构:改进的网络架构,提高检测精度。
- 更快的推理速度:优化计算效率,实现更低的延迟。
- 支持多种任务:不仅支持目标检测,还支持实例分割、姿态估计等。
- 便捷的 API:提供 Python SDK,易于集成到项目中。
2.2 YOLOv8 安装方法
方法 1:使用 pip 安装(推荐)
pip install ultralytics
方法 2:使用源码安装(适用于定制化开发)
git clone https://github.com/ultralytics/ultralytics.git
cd ultralytics
pip install -e .
方法 3:使用 Docker 运行 YOLOv8
docker pull ultralytics/yolov8
然后运行:
docker run --rm -it ultralytics/yolov8 python -c "from ultralytics import YOLO; YOLO('yolov8n.pt')"
安装完成后,测试是否成功:
from ultralytics import YOLO
model = YOLO("yolov8n.pt") # 加载预训练模型
model.predict("sample.jpg", save=True) # 对图片进行目标检测
3. 数据集准备与标注
YOLOv8 需要使用 COCO、VOC 或 YOLO 格式的数据集,通常数据集的格式如下:
3.1 数据集结构
dataset/
├── images/
│ ├── train/
│ │ ├── img1.jpg
│ │ ├── img2.jpg
│ ├── val/
│ │ ├── img3.jpg
│ ├── test/
│ │ ├── img4.jpg
├── labels/
│ ├── train/
│ │ ├── img1.txt
│ │ ├── img2.txt
│ ├── val/
│ │ ├── img3.txt
│ ├── test/
│ │ ├── img4.txt
├── data.yaml
3.2 标注工具与步骤
推荐工具:
- LabelImg(适用于 VOC、YOLO 格式)
- Roboflow Annotate(支持多种格式,在线工具)
- CVAT(适用于大规模数据标注)
使用 LabelImg 标注数据集
- 安装 LabelImg:
pip install labelImg labelImg
- 打开图片文件夹,选择 YOLO 格式。
- 使用鼠标框选目标,输入类别 ID。
- 点击“保存”按钮,生成
.txt
文件。
示例标注后的 .txt
文件内容:
0 0.5 0.6 0.3 0.4
1 0.4 0.3 0.2 0.2
3.3 数据集配置文件 data.yaml
path: /path/to/dataset
train: images/train
val: images/val
test: images/test
names:
0: person
1: car
2: dog
data.yaml
主要指定数据集路径和类别名称。
4. 训练 YOLOv8 模型
确保数据集已正确格式化,并运行以下命令开始训练:
yolo task=detect mode=train model=yolov8n.pt data=data.yaml epochs=50 imgsz=640 batch=16
4.1 关键训练参数解析
参数 | 作用 |
---|---|
task=detect | 任务类型(目标检测) |
mode=train | 运行模式(训练) |
model=yolov8n.pt | 预训练模型(nano 版本) |
data=data.yaml | 数据集配置文件 |
epochs=50 | 训练轮数 |
imgsz=640 | 输入图片尺寸 |
batch=16 | 训练批次大小 |
5. 评估与优化
训练完成后,可以评估模型性能:
yolo task=detect mode=val model=weights/best.pt data=data.yaml
主要评估指标:
- mAP(均值平均精度)
- FPS(推理速度)
- 召回率与准确率
优化策略:
- 调整学习率(
lr0=0.01 lr1=0.001
)。 - 使用更多数据增强(
hsv_h=0.5 hsv_s=0.5
)。 - 适当增大 batch size(
batch=32
)。
6. 推理与部署
进行推理:
yolo task=detect mode=predict model=weights/best.pt source=sample.jpg save=True
或使用 Flask API 部署:
from flask import Flask, request, jsonify
from ultralytics import YOLO
app = Flask(__name__)
model = YOLO("weights/best.pt")
@app.route("/predict", methods=["POST"])
def predict():
file = request.files['file']
file.save("input.jpg")
results = model.predict("input.jpg")
return jsonify(results[0].tojson())
if __name__ == "__main__":
app.run(host="0.0.0.0", port=5000)
7. 结论
本教程从 YOLOv8 介绍、安装、数据集准备、训练、评估、推理与部署 进行了全方位解析。
希望本教程能够帮助你掌握 YOLOv8,并将其应用于实际项目!🚀