YOLOv8 目标检测入门:手把手实战教程

1. 引言

目标检测(Object Detection)是计算机视觉的重要任务之一,广泛应用于自动驾驶、视频监控、机器人视觉等领域。YOLO(You Only Look Once)系列作为目前最流行的目标检测算法之一,以其实时性强、精度高、部署便捷的特点受到开发者和研究人员的广泛关注。

本教程将详细介绍 YOLOv8 目标检测的基本概念、数据集准备、模型训练、超参数调优及推理部署,让你能真正掌握 YOLOv8,并应用到实际项目中。


2. YOLOv8 介绍与安装

2.1 什么是 YOLOv8?

YOLOv8 由 Ultralytics 团队发布,是 YOLO 系列的最新版本,主要特点包括:

  • 更强的模型结构:改进的网络架构,提高检测精度。
  • 更快的推理速度:优化计算效率,实现更低的延迟。
  • 支持多种任务:不仅支持目标检测,还支持实例分割、姿态估计等。
  • 便捷的 API:提供 Python SDK,易于集成到项目中。

2.2 YOLOv8 安装方法

方法 1:使用 pip 安装(推荐)
pip install ultralytics
方法 2:使用源码安装(适用于定制化开发)
git clone https://github.com/ultralytics/ultralytics.git
cd ultralytics
pip install -e .
方法 3:使用 Docker 运行 YOLOv8
docker pull ultralytics/yolov8

然后运行:

docker run --rm -it ultralytics/yolov8 python -c "from ultralytics import YOLO; YOLO('yolov8n.pt')"

安装完成后,测试是否成功:

from ultralytics import YOLO

model = YOLO("yolov8n.pt")  # 加载预训练模型
model.predict("sample.jpg", save=True)  # 对图片进行目标检测

3. 数据集准备与标注

YOLOv8 需要使用 COCO、VOC 或 YOLO 格式的数据集,通常数据集的格式如下:

3.1 数据集结构

dataset/
 ├── images/
 │   ├── train/
 │   │   ├── img1.jpg
 │   │   ├── img2.jpg
 │   ├── val/
 │   │   ├── img3.jpg
 │   ├── test/
 │   │   ├── img4.jpg
 ├── labels/
 │   ├── train/
 │   │   ├── img1.txt
 │   │   ├── img2.txt
 │   ├── val/
 │   │   ├── img3.txt
 │   ├── test/
 │   │   ├── img4.txt
 ├── data.yaml

3.2 标注工具与步骤

推荐工具:

  1. LabelImg(适用于 VOC、YOLO 格式)
  2. Roboflow Annotate(支持多种格式,在线工具)
  3. CVAT(适用于大规模数据标注)
使用 LabelImg 标注数据集
  1. 安装 LabelImg:
    pip install labelImg
    labelImg
    
  2. 打开图片文件夹,选择 YOLO 格式。
  3. 使用鼠标框选目标,输入类别 ID。
  4. 点击“保存”按钮,生成 .txt 文件。

示例标注后的 .txt 文件内容:

0 0.5 0.6 0.3 0.4
1 0.4 0.3 0.2 0.2

3.3 数据集配置文件 data.yaml

path: /path/to/dataset
train: images/train
val: images/val
test: images/test
names:
  0: person
  1: car
  2: dog

data.yaml 主要指定数据集路径和类别名称。


4. 训练 YOLOv8 模型

确保数据集已正确格式化,并运行以下命令开始训练:

yolo task=detect mode=train model=yolov8n.pt data=data.yaml epochs=50 imgsz=640 batch=16

4.1 关键训练参数解析

参数作用
task=detect任务类型(目标检测)
mode=train运行模式(训练)
model=yolov8n.pt预训练模型(nano 版本)
data=data.yaml数据集配置文件
epochs=50训练轮数
imgsz=640输入图片尺寸
batch=16训练批次大小

5. 评估与优化

训练完成后,可以评估模型性能:

yolo task=detect mode=val model=weights/best.pt data=data.yaml

主要评估指标:

  • mAP(均值平均精度)
  • FPS(推理速度)
  • 召回率与准确率

优化策略:

  • 调整学习率(lr0=0.01 lr1=0.001)。
  • 使用更多数据增强(hsv_h=0.5 hsv_s=0.5)。
  • 适当增大 batch size(batch=32)。

6. 推理与部署

进行推理:

yolo task=detect mode=predict model=weights/best.pt source=sample.jpg save=True

或使用 Flask API 部署:

from flask import Flask, request, jsonify
from ultralytics import YOLO

app = Flask(__name__)
model = YOLO("weights/best.pt")

@app.route("/predict", methods=["POST"])
def predict():
    file = request.files['file']
    file.save("input.jpg")
    results = model.predict("input.jpg")
    return jsonify(results[0].tojson())

if __name__ == "__main__":
    app.run(host="0.0.0.0", port=5000)

7. 结论

本教程从 YOLOv8 介绍、安装、数据集准备、训练、评估、推理与部署 进行了全方位解析。

希望本教程能够帮助你掌握 YOLOv8,并将其应用于实际项目!🚀

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值