系统的闭环极点也就是特征方程式的根。当系统的某一个或某些参量变化时,特征方程的根在s平面上运动的轨迹称为根轨迹。根轨迹法不直接求解特征方程,而利用系统的开环零、极点分布图,采用图解法来确定系统的闭环特征根随参数变化的运动轨迹,进而对系统的动态和稳态特性进行定性分析和定量计算。
设控制系统如图所示,其开环传递函数为
系统开环极点有两个:p1=-1,p2=-2。系统的闭环传递函数为
系统的特征方程为D(s)=s^2+3s+2+K其特征根为
系统的闭环极点也就是特征方程式的根。当系统的某一个或某些参量变化时,特征方程的根在s平面上运动的轨迹称为根轨迹。根轨迹法不直接求解特征方程,而利用系统的开环零、极点分布图,采用图解法来确定系统的闭环特征根随参数变化的运动轨迹,进而对系统的动态和稳态特性进行定性分析和定量计算。
设控制系统如图所示,其开环传递函数为
系统开环极点有两个:p1=-1,p2=-2。系统的闭环传递函数为
系统的特征方程为D(s)=s^2+3s+2+K其特征根为