【自控】系统稳定性分析:根轨迹法的概念

本文介绍了如何通过根轨迹法分析控制系统中闭环极点的变化,随着开环增益K的变化,特征根在s平面上的运动轨迹展示了系统稳定性及性能。方法包括开环极点分析和根轨迹基本条件的应用,对不同K值下的系统行为进行了定性和定量描述。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

系统的闭环极点也就是特征方程式的根。当系统的某一个或某些参量变化时,特征方程的根在s平面上运动的轨迹称为根轨迹。根轨迹法不直接求解特征方程,而利用系统的开环零、极点分布图,采用图解法来确定系统的闭环特征根随参数变化的运动轨迹,进而对系统的动态和稳态特性进行定性分析和定量计算。

设控制系统如图所示,其开环传递函数为

系统开环极点有两个:p1=-1,p2=-2。系统的闭环传递函数为

系统的特征方程为D(s)=s^2+3s+2+K其特征根为

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值