控制系统的稳态误差,是系统控制精度的一种度量,称为稳态性能指标。一个控制系统,只有在满足要求的控制精度前提下,才有实际工程意义。系统的误差e(t)一般定义为被控量的希望值与实际值之差。即误差
e(t)=被控量的希望值-被控量的实际值
把系统的输入信号r(t)作为被控量的希望值,而把主反馈信号b(t)(通常是被控量的测量值)作为被控量的实际值,定义误差为
这种定义下的误差在实际系统中是可以测量的,且具有一定的物理含义。通常该误差信号也称为控制系统的偏差信号。
误差响应e(t)与系统输出响应c(t)一样,也包含暂态分量和稳态分量两部分,对于一个稳定系统,暂态分量随着时间的推移逐渐消失,而我们主要关心的是控制系统平稳以后的误差,即系统误差响应的稳态分量——稳态误差,记为ess。研究系统稳定性时关注的是系统的暂态响应(零输入响应),而研究系统的稳态误差时关注的是系统的稳态响应(零状态响应)。定义系统的稳态误差为稳定系统误差响应e(t)的终值。当时间t趋于无穷时,e(t)的极限存在,则稳态误差为
系统的稳态误差取决于哪些方面?
根据误差和稳态误差的定义,系统误差e(t)的像函数
定义
为系统对输入信号的误差传递函数。
由拉普拉斯变换的终值定理,系统的稳态误差为
代入E(s)表达式得
可以得出两点结论:
(1