自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(77)
  • 收藏
  • 关注

原创 NumPy 中数组拼接、合并详解

将值添加到数组的末端,返回一个新的数组,而原数组不变。

2024-01-18 15:58:46 1589

原创 NumPy 中 reshape 函数用法详解

在不更改数组数据的情况下,改变数组的形状,返回一个新的数组。例如将一个二维数组转换成一个三维数组。

2024-01-18 12:16:41 1535

原创 强化学习(三)有限马尔可夫决策过程

马尔科夫决策过程是通过与环境互动进行学习的直接框架,决策者称为,智能体之外的一切称为,它们不断交互,智能体选择动作,环境反馈给智能体新的状态和奖励。S0​A0​R1​S1​A1​R2​S2​A2​R3​⋯其中,SA和R分别对应状态、动作和奖励。在有限马尔可夫决策过程中,SA和R的集合都具有有限数量的元素,在这种情况下,随机变量Rt​和St​可以被定义为离散概率分布,且仅依赖前一状态和动作,即ps′r∣sa≐。

2024-01-17 14:36:06 1322

原创 Matlab 求解非刚性微分方程(ode45)

使用 ode45 函数、时间区间 [0 20] 和初始值 [2 0] 来解算该 ODE。生成的输出即为时间点 t 的列向量和解数组 y。是二元素向量 dydt 的项 y(1) 和 y(2)。函数文件 vdp1.m 为。

2024-01-16 15:52:05 1045

原创 强化学习(二)多臂老虎机 “Multi-armed Bandits”——2

由之前的内容可知,某一个动作被选择n−1次后,该动作的价值估计值为Qn​≐n−1R1​R2​⋯Rn−1​​很明显,随着时间的推移,内存和计算的需求逐渐增长,为此设计增量算法,已知Qn​和第n次的奖励Rn​,则这nQn1​​n1​i1∑n​Ri​n1​Rn​i1∑n−1​Ri​n1​Rn​n−1n−11​i1∑n−1​Ri​n1​。

2024-01-16 12:22:52 1013

原创 强化学习(二)多臂老虎机 “Multi-armed Bandits”——1

将强化学习与机器学习、深度学习区分开的最重要的特征为:它通过训练中信息来评估所采取的动作,而不是给出正确的动作进行指导,这极大地促进了寻找更优动作的需求。

2024-01-15 09:58:28 1880

原创 强化学习(一)简介

强化学习这一概念在历史上来源于行为心理学,来描述生物为了的学习过程。人类学习的过程其实就是为达到某种目的不断地与环境进行互动试错,比如婴儿学习走路。强化学习算法探索了一种的计算方法。

2024-01-13 21:52:13 1214

原创 Matlab 分段函数(piecewise)

y−1x01x0y=y−11​x0x0​syms x通过使用subs将 -2,0,2 代入x。因为y在x=0处没有定义,所以返回值为NaN。yx−1x01x0y(x)=yx−11​x0x0​syms y(x)因为y(x)是符号函数,因此可以直接计算。

2024-01-10 13:52:15 11265

原创 PPO算法理论

强化学习中,智能体(强化学习中独立的能够思想并可以同环境交互的实体)和环境一直在交互。S0​A0​R1​S1​A1​R2​⋯,其中,S为状态,A为动作,R为奖励。马尔可夫过程将这种序列决策过程公式化。在概率论和统计学中,如果随机过程的未来状态的条件概率分布仅取决于当前状态,而不取决于过去事件的顺序,则该随机过程具有马尔可夫特性。

2024-01-09 14:28:55 2857

原创 径向基函数插值

径向基函数插值是对于给定的多元散乱数据。

2024-01-08 16:13:28 2878

原创 数值计算—三次样条函数插值

Sixi1Si1xi1i012⋯n−2Si​xi1​Si1​xi1​i012⋯n−2​已知n1n+1n1个节点,nnn个区间,因此有n−1n-1n−1个衔接点,共生成n−1n-1n−1个方程,即S0x1S1x1S1x2S2x2⋮Sn−2xn−1Sn−1xn−1⎩⎨⎧​S0​x1​S1​x。

2024-01-04 22:12:13 3533 2

原创 变分法的基本概念

1、泛函变分法是研究泛函极值问题的工具。泛函就是函数的函数,它是普通函数概念的一种补充。首先回顾一下函数的概念:如果变量 yyy 因 xxx 的变化按某一确定的规律而变化,或者说,对应于 xxx 定义域中的每一个 xxx 值,yyy 都有一个(或一组)确定的值与之对应,则称 yyy 是 xxx 的函数,记作 y=f(x)y=f(x)y=f(x)。这里宗量 xxx 是独立自变量,而 yyy 是因变量。与函数概念相对应,可以这样来阐明泛函的概念:如果一个因变量,它的宗量不是独立自变量,而是另一些独立自变量

2024-01-03 17:35:01 1843

原创 最优控制概述

例如,有甲乙两个仓库分别存有水泥 1500 包和 1800 包,有 A、B、C 三个工地,分别需要水泥 900 包、600 包和 1200 包。已知从甲库运送到 A、B、C 三个工地,每包水泥的运费分别是 1 元、2 元和4 元;从乙库运送到 A、B、C 三个工地,每包水泥的运费分别是 4 元、5 元和 9 元。应怎样发运这些水泥能使运费最省呢?这就是一个。设从甲库运往 A、B、C 三个工地的水泥包数分别为x1​x2​x3​;从乙运往 A、B、C 三个工地的水泥包数分别为x4​。

2024-01-03 10:22:39 1444

原创 矩阵微分与向量函数的Taylor展开

​,x∈Rn1、对标量的微分令 F(t)=[fij(t)]∈Rn×mF(t)=[f_{ij}(t)]\in\pmb{R}^{n\times m}F(t)=[fij​(t)]∈Rn×m 是关于标量 t∈R1t\in \pmb R^1t∈R1 的函数矩阵,则其关于 ttt 的导数为dF(t)dt=[dfij(t)dt]∈Rn×m\dfrac{\mathrm{d}F(t)}{\mathrm{d}t}=\Big[\dfrac{\mathrm{d} f_{ij}(t)}{\mathrm{d}t}\Big]

2024-01-02 22:30:04 2492

原创 <基于人类偏好的深度强化学习>

限制强化学习应用的一个重要原因就是,许多任务所涉及的目标都很复杂或者不太明确,因此很难人为设计一个奖励函数来激励智能体进行学习。有两个方法可以解决这个问题:① 通过人类标注数据使用逆强化学习获得奖励函数模型,这样有了奖励函数之后,就可以使用一般的强化学习的方法去找出最优策略/动作。② 人类直接对智能体的当前策略/动作提供反馈,也就是用人类来替代奖励函数。OpenAI 的方法是从人类反馈中学习奖励函数,然后再优化奖励函数。

2023-12-29 15:04:45 807

原创 最小二乘法

勒让德认为,最小化误差的平方和所估计出来的模型是最接近真实情形的(误差=真实值-理论值)。也就是说,最佳的拟合准则是使yi​与fxi​的距离的平方和最小,这个准则也被称为最小二乘准则。

2023-12-29 15:03:36 998

原创 PID控制器

PID 控制的理论依据是以系统偏差为输入,使用权重相加的方式将比例,积分和微分三个环节合并输出以形成控制量,从而实现既定的控制目标。图中,et为系统输入进来的控制信号rt与系统输出控制量yt的反馈值之间的差值,该值经过比例、积分和微分环节的共同作用,进而转化为 PID 控制器的输出值ut。utKp​⋅etKi​∗∫0t​etdtKd​dtdet​式中的比例系数Kp​、积分系数Ki​、微分系数Kd​。

2023-12-06 15:50:20 984 1

原创 四旋翼无人机动力学模型建立

地理坐标系Oa​Xa​Ya​Za​的原点定义为起飞前的位置,X轴与Y轴在同一平面内且相互垂直,Z轴垂直向上;机体坐标系Ob​Xb​Yb​Zb​以4个旋翼的相交点为原点,X轴指向电机1,Y轴指向电机4,Z轴垂直于机身向上。

2023-12-06 15:29:17 11818 4

原创 Lyapunov指数计算的标准方法

个正交向量作为(2)的初始状态,先令其为。,再对这些向量作施密特正交化,有。的 Jacobian矩阵,个 Lyapunov指数,方程(2)的解可以写成。

2023-10-25 09:44:45 751

原创 二自由度车辆动力学系统状态方程

{m(v˙x−vyγ)=Fxfcos⁡δf+Fxrcos⁡δr−Fyfsin⁡δf−Fyrsin⁡δr−FRm(v˙y+vxγ)=Fxfsin⁡δf+Fxrsin⁡δr+Fyfcos⁡δf+Fyrcos⁡δrIzγ˙=Lf(Fxfsin⁡δf+Fyfcos⁡δf)−Lr(Fxrsin⁡δr+Fyrcos⁡δr)(1)\begin{cases}m(\dot{v}_x-v_y\gamma)=F_{xf}\cos\delta_f+F_{xr}\cos\delta_r-F_{yf}\sin\delta_f-F_

2023-10-10 10:21:46 1058 1

原创 稳定性与李亚普洛夫方法

1、李亚普洛夫意义下稳定如果系统对任意选定的实数ε0ε0,都对应存在另一个实数δεt00δεt0​0使当∥x0−xe∥≤δεt0∥x0​−xe​∥≤δεt0​时,从任意初始状态x0\pmb{x_0}x0​∥x0−xe∥≤εt0≤t∞∥x0​−xe​∥≤εt0​≤t∞则称平衡状态xe\pmb{x_e}xe​为李亚普洛夫意义下稳定。

2023-09-12 16:22:38 563

原创 线性系统的能控性

能控性:分析ut对状态xt的控制能力能观性:输出yt对状态xt的反映能力​。

2023-09-12 14:49:57 304

原创 状态空间表达式的解

齐次矩阵微分方程x˙Ax,初始状态给定为x0x0​,则微分方程有唯一解。xteAtx0​t≥t0​证明:假设解xt为t的矢量幂级数形式xtb0​b1​tb2​t2⋯bk​tk⋯将其代入微分方程得b1​2b2​t3b3​t2⋯kbk​tk−1⋯Ab0​b1​tb2​t2⋯bk​tk⋯可得b0​x0​b1​Ab。

2023-09-12 11:19:31 868

原创 状态空间表达

传递函数的极点决定系统的稳定性,而状态空间表达式中。的特征值决定系统的稳定性。

2023-09-12 00:36:48 285

原创 卡尔曼滤波器原理

一、递归算法维基百科对递归的解释是:递归(Recursion),又译为递回,在数学与计算机科学中,是指在函数的定义中使用函数自身的方法。举个栗子多次测量一个硬币的直径,观测结果分别为 z1,z2,⋯ ,zkz_1,z_2,\cdots,z_kz1​,z2​,⋯,zk​( kkk 为测量的次数),我们希望得到这个硬币直径的估计值 x~\tilde{x}x~。我们可以对观测结果取平均值:测量次数kkk估计值 xk~\tilde{x_k}xk​~​1z1z_1z1​2

2023-09-06 23:46:45 160 1

原创 四、矢量场的环量和旋度、斯托克斯定理

矢量场A沿闭合回路L的线积分称为,用ΓA​表示环量,则有ΓA​∮L​A⋅dl1令为闭合曲线L包围的面积,en​为的右旋单位法线矢量。设想回路L逐渐缩小,最后缩到空间某点P。当ΔS→0时,ΓA​也趋于0。若两者之比有一极限,则这极限值为矢量场A的旋度(它是个矢量)在en​上的投影。A的旋度记作curlA或rotA,或▽×A。上述定义可写作▽×An​Δ→0lim​ΔSΓA​​Δ→0lim。

2023-08-07 23:11:44 3623

原创 三、矢量场的通量和散度 高斯定理

矢量场A通过一个截面S的通量ΦA​ΦA​∬S​A⋅dS∬S​AcosθdS1式中θ为A与面元dS的法线en​之间夹角,dSen​dS。如流速场中的流量,电场和磁场中的电场强度通量、磁通量,都属于“通量”的概念。令S为一闭合曲面,它包含的体积为ΔV,设想S面逐渐缩小到空间某点P。用ΦA​代表矢量场A在闭合面SΦA​∬S​A⋅dS2当ΔV→0时,ΦA​也趋于0。

2023-08-07 14:00:37 4088

原创 二、标量场的梯度

平常所谓“梯度”,是指一个空间位置函数的辩护率,在数学上就是它的微商。对于多元函数,它对每个空间坐标变量都有一个偏微商,如∂x∂Φ​∂y∂Φ​∂z∂Φ​​等。这些偏微商表示标量场Φxyz沿三个坐标方向的变化率。如果要问Φxyz沿任意方向Δl的变化率是多少呢?标量场的梯度如图所示,P是标量场中某个点,设此点标量场的数值是ΦP,由P点引一个位移矢量Δl,到达附件的另一点Q,设Q点标量场的数值为ΦQΦPΔΦ,令Q→PΔl。

2023-08-03 14:41:47 2183

原创 一、标量场和矢量场

矢量分析法中首先需要了解标量场和矢量场的区别

2023-08-03 12:36:07 4841

原创 三、直流电机

图1. 两极直流电机模型aωt2π​bωt23π​图1中,它的固定部分(定子)上,装有用于直流励磁的N 和 S ,在旋转部分(转子)上装设有。定子和转子之间有一。电枢铁心上装有由 A 和 X 两根导线连接而成的电枢线圈,线圈首末端分布连接到两各圆弧形的铜片K1​和K2​,称为。由换向片构成的整体称为,换向器固定在转轴上。换向器上放置着一对静止不动的电刷B1​和B2​,电枢旋转时,电枢线圈通过换向片和电刷与外电路接通。θs​为沿电枢表面周围的电角度。

2023-07-31 14:02:18 6175 1

原创 二、磁路计算

给定磁通量,计算所需要的励磁磁动势。:给定励磁磁动势,计算磁通量。下面说明正问题的计算方法图1. 简单串联磁路 a) 串联磁路 b) 等效磁路图即不计漏磁影响,仅有一个磁回路,如图1所示。此时整个磁路中为统一磁通,但由于各段磁路的截面积不同,故应分段求出各段中的磁通密度Bk​,再根据所用材料的磁化曲线,查出产生Bk​所需的磁场强度Hk​,最后求出各段和整个磁路所需的磁动势值。若磁路中含有气隙,由于气隙磁场的边缘效应,使气隙的有效面积Aδ有效​要比实际面积Aδ​。

2023-07-27 16:18:37 2747

原创 一、磁路的基本定律和铁磁材料的特性

分析和计算磁场时,常常要用到两条基本定律,一条是,另一条是。把这两条定律应用到磁路,可得磁路的欧姆定律和磁路的基尔霍夫第一和第二定律,下而对这些定律作一说明。沿着任何一条闭合回线L,磁场强度H的线积分∮H⋅dl恰好等于该闭合回线所包围的总电流值∑i∮H⋅dl∑i1如果,电流正方向与闭合回线L的环行方向符合右手螺旋关系,i取正号,否则取负号。如图1,有∮H⋅dl−i1​i2​−i3​图1. 安培环路定律。

2023-07-27 15:11:11 3265

原创 YOLOv5目标检测算法

YOLOv5与YOLOv4实质上都是在YOLOv3算法的基础上,进行了网络结构及训练技巧等方面的改进,使得检测性能得到进一步的提升。YOLO系列目标检测的框架,通常可以分为如下几个部分:输入端、骨干网络、Neck网络和输出端。本文将具体阐述YOLOv5算法的改进之处,主要内容如下:(1)输入端的改进,主要增加了Mosaic数据增强方法和自适应图片缩放方法。(2)骨干网络的改进,考虑了Focus结构和CSPNet结构。(3)输出端的改进,主要对损失函数的构建进行了研究。

2023-07-26 22:39:15 849 1

原创 功率谱密度

定义:单位频带内的“功率”(均方值),它描述随机信号在平均意义上的功率谱特性。

2023-07-26 14:47:16 763 1

原创 傅里叶变换推导

如果两个函数之间内积为0,称之为正交函数。

2023-07-24 16:55:07 1073

原创 基于阈值的图像分割方法以及Python实现

阈值分割法可以说是图像分割中的经典方法,它利用图像中要提取的目标与背景在灰度上的差异,通过设置阈值来把像素分成若干类,从而实现目标与背景的分离。

2023-07-06 21:46:06 8839 3

原创 感知机实现鸢尾花三分类

任务了解感知机的原理并能够实现感知机是一个二元分类模型,通过其完成三分类任务从数据集四个特征中选择两个合适的特征来实现分类,并评估模型的准确性和F1分数将结果可视化:绘制数据和感知机超平面的散点图

2023-06-24 16:21:24 894 1

图片图片图片图片图片图片图片图片图片图片图片图片图片

图片图片图片图片图片图片图片图片图片图片图片图片图片

2024-08-16

表贴式永磁同步电机建模、分析与设计

表贴式永磁同步电机建模、分析与设计

2023-08-12

永磁电机磁场解析法建模的研究

永磁电机磁场解析法建模的研究

2023-08-12

永磁同步电机的矢量控制系统研究

永磁同步电机的矢量控制系统研究

2023-08-12

电磁主动悬架直线式作动器优化设计及馈能设计研究

电磁主动悬架直线式作动器优化设计及馈能设计研究

2023-08-12

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除