变分法的基本概念

1、泛函

变分法是研究泛函极值问题的工具。泛函就是函数的函数,它是普通函数概念的一种补充。

首先回顾一下函数的概念:如果变量 y y y x x x 的变化按某一确定的规律而变化,或者说,对应于 x x x 定义域中的每一个 x x x 值, y y y 都有一个(或一组)确定的值与之对应,则称 y y y x x x 的函数,记作 y = f ( x ) y=f(x) y=f(x)。这里宗量 x x x 是独立自变量,而 y y y 是因变量。

与函数概念相对应,可以这样来阐明泛函的概念如果一个因变量,它的宗量不是独立自变量,而是另一些独立自变量的函数,则称该因变量为这个宗量函数的泛函。或者说,对应于某一类函数中的每一个确定的函数 y ( x ) y(x) y(x) (注意,不是函数值),因变量 J J J 都有一确定的值(注意,不是函数)与之对应,则称因变量 J J J 为宗量函数 y ( x ) y(x) y(x) 的泛函数,简称泛函。记作 J = J [ y ( x ) ] J=J[y(x)] J=J[y(x)] 或简记为 J J J。应该强调的是这个记号中的 y ( x ) y(x) y(x) 应理解为某一特定函数的整体,而不是对应于 x x x 的函数值 y ( x ) y(x) y(x),因此有时又记作 J = J [ y ( ⋅ ) ] J=J[y(\cdot)] J=J[y()]
在这里插入图片描述

例如,在直角坐标平面中有两点 A ( x a , y a ) A(x_a,y_a) A(xa,ya) B ( x b , y b ) B(x_b,y_b) B(xb,yb),连接这两点的曲线长度(弧长 l l l)是曲线函数 y = y ( x ) y=y(x) y=y(x) 的泛函。因为当 y = y ( x ) y=y(x) y=y(x) 一经确定,就可具体计算出 A 、 B A、B AB 两点间的弧长。

由弧长的微分:
( d l ) 2 = ( d x ) 2 + ( d y ) 2 (\mathrm{d}l)^2=(\mathrm{d}x)^2+(\mathrm{d}y)^2 (dl)2=(dx)2+(dy)2


d l d x = 1 + ( d y d x ) 2 = 1 + y ˙ 2 \dfrac{\mathrm{d}l}{\mathrm{d}x}=\sqrt{1+\Big(\dfrac{\mathrm{d}y}{\mathrm{d}x}\Big)^2}=\sqrt{1+\dot{y}^2} dxdl=1+(dxdy)2 =1+y˙2

所以
l = ∫ x a x b 1 + y ˙ 2 d x l=\int_{x_a}^{x_b}\sqrt{1+\dot{y}^2}\mathrm{d}x l=xaxb1+y˙2 dx

显然对不同得曲线 y ( x ) y(x) y(x),就有不同得弧长 l l l 与之对应,所以弧长 l l l 是宗量函数 y ( x ) y(x) y(x) 的泛函,记作 J [ y ( x ) ] J[y(x)] J[y(x)],即
J [ y ( x ) ] = ∫ x a x b 1 + y ˙ 2 d x = ∫ x a x b L ( y ˙ ) d x J[y(x)]=\int_{x_a}^{x_b}\sqrt{1+\dot{y}^2}\mathrm{d}x=\int_{x_a}^{x_b}L(\dot{y})\mathrm{d}x J[y(x)]=xaxb1+y˙2 dx=xaxbL(y˙)dx

一般地, L L L 也是 x , y x,y x,y 的函数,因此应写成:
J = ∫ x a x b L ( y , y ˙ , x ) d x (1) J=\int_{x_a}^{x_b}L(y,\dot{y},x)\mathrm{d}x\tag{1} J=xaxbL(y,y˙,x)dx(1)

很显然,两点间的最短弧长应是直线 y ∗ ( x ) y^\ast(x) y(x),即
l m i n = J ∗ = min ⁡ J [ y ( x ) ] = J [ y ∗ ( x ) ] l_{min}=J^\ast=\min J[y(x)] = J[y^\ast(x)] lmin=J=minJ[y(x)]=J[y(x)]

在控制系统中,自变量是时间 t t t,宗量函数是状态矢量 x ( t ) \pmb{x}(t) x(t),因此式(1)可写成
J = ∫ x a x b L ( x , x ˙ , t ) d t J=\int_{x_a}^{x_b}L(x,\dot{x},t)\mathrm{d}t J=xaxbL(x,x˙,t)dt

又因 x ˙ ( t ) = f [ x ( t ) , u ( t ) , t ] \dot{\pmb{x}}(t)=\pmb{f}[\pmb{x}(t),\pmb{u}(t),t] x˙(t)=f[x(t),u(t),t],所以 J J J 又可写成
J = ∫ t 0 t f L [ x ( t ) , u ( t ) , t ] d t J=\int_{t_0}^{t_f}L[\pmb{x}(t),\pmb{u}(t),t]\mathrm{d}t J=t0tfL[x(t),u(t),t]dt

这就是积分型性能泛函。 J J J 的值取决于函数 u ( t ) \pmb{u}(t) u(t),不同的函数 u ( t ) \pmb{u}(t) u(t),有不同的 J J J 值与之相对应,所以, J J J 是函数 u ( t ) \pmb{u}(t) u(t) 的泛函,所谓求最优控制 u ∗ ( t ) \pmb{u}^\ast(t) u(t),就是寻求使性能泛函 J J J 取极值时的控制 u ( t ) \pmb{u}(t) u(t)

综上可见,泛函与函数的区别,仅在于泛函的宗量是函数,而函数的宗量是变数。

2、泛函的极值

求泛函的极大值或极小值问题称为变分问题。求泛函极值的方法称为变分法。

如果泛函 J [ y ( x ) ] J[y(x)] J[y(x)] 在任何一条与 y 0 ( x ) y_0(x) y0(x) 接近的曲线上所取得值不小于 J [ y 0 ( x ) ] J[y_0(x)] J[y0(x)],即
Δ J = J [ y ( x ) ] − J [ y 0 ( x ) ] ≥ 0 \Delta J=J[y(x)]-J[y_0(x)]\geq0 ΔJ=J[y(x)]J[y0(x)]0

则成泛函 J [ y ( x ) ] J[y(x)] J[y(x)] y 0 ( x ) y_0(x) y0(x) 曲线上达到了极小值。反之,达到了极大值。

何谓两个函数的接近呢?在函数中,说自变量 x x x 接近于 x 0 x_0 x0,不外乎只有两个方向,一个是沿着 x x x 轴的左边接近,另一个是沿着 x x x 轴的右边接近。但是泛函的宗量是函数,说两个函数接近,问题就没这样简单。如果对于定义域中的一切 x x x,下式都成立:
∣ y ( x ) − y 0 ( x ) ∣ ≤ ε |y(x)-y_0(x)|\leq\varepsilon y(x)y0(x)ε

其中 ε \varepsilon ε 是一正的小量,则称函数 y ( x ) y(x) y(x) y 0 ( x ) y_0(x) y0(x) 有零阶接近度。如图所示,具有零阶接近度的两条曲线的形状可能差别很大。
在这里插入图片描述
如果不仅是函数值,而且它的各阶导数也很接近,即满足:
{ ∣ y ( x ) − y 0 ( x ) ∣ ≤ ε ∣ y ′ ( x ) − y 0 ′ ( x ) ∣ ≤ ε ∣ y ′ ′ ( x ) − y 0 ′ ′ ( x ) ∣ ≤ ε                  ⋮ ∣ y k ( x ) − y 0 k ( x ) ∣ ≤ ε \begin{cases} |y(x)-y_0(x)|\leq\varepsilon\\[2ex] |y^\prime(x)-y^\prime_0(x)|\leq\varepsilon\\[2ex] |y^{\prime\prime}(x)-y^{\prime\prime}_0(x)|\leq\varepsilon\\[2ex] \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \vdots\\[2ex] |y^{k}(x)-y^{k}_0(x)|\leq\varepsilon \end{cases} y(x)y0(x)εy(x)y0(x)εy′′(x)y0′′(x)ε                yk(x)y0k(x)ε

则称 y ( x ) y(x) y(x) y 0 ( x ) y_0(x) y0(x) k k k 阶接近度,如图可见,接近度阶次越高,表明函数的接近程度越好。
在这里插入图片描述

3、泛函的变分

泛函的增量可表示为:
Δ J = J [ y ( x ) + δ y ( x ) ] − J [ y ( x ) ] = L [ y ( x ) , δ y ( x ) ] + R [ y ( x ) , δ y ( x ) ] (2) \begin{aligned} \Delta J &= J[y(x)+\delta y(x)]-J[y(x)]\\ &=L[y(x),\delta y(x)]+R[y(x),\delta y(x)] \end{aligned}\tag{2} ΔJ=J[y(x)+δy(x)]J[y(x)]=L[y(x),δy(x)]+R[y(x),δy(x)](2)

式中, δ y ( x ) = y ( x ) − y 0 ( x ) \delta y(x)=y(x)-y_0(x) δy(x)=y(x)y0(x) 为宗量 y ( x ) y(x) y(x) 的变分; L [ y ( x ) , δ y ( x ) ] L[y(x),\delta y(x)] L[y(x),δy(x)] δ y ( x ) \delta y(x) δy(x) 的线性连续泛函; R [ y ( x ) , δ y ( x ) ] R[y(x),\delta y(x)] R[y(x),δy(x)] δ y ( x ) \delta y(x) δy(x) 的高阶无穷小项。

定义泛函增量的线性主部:
δ J = L [ y ( x ) , δ y ( x ) ] (3) \delta J=L[y(x),\delta y(x)]\tag{3} δJ=L[y(x),δy(x)](3)

为泛函的变分。若泛函有变分,而且增量 Δ J \Delta J ΔJ 可用式(2)表达时,则称泛函是可微的。

泛函的变分也可定义为:
δ J = ∂ ∂ α J [ y ( x ) + α δ y ( x ) ] ∣ α = 0 (4) \delta J=\dfrac{\partial}{\partial \alpha}J[y(x)+\alpha\delta y(x)]\Big|_{\alpha=0}\tag{4} δJ=αJ[y(x)+αδy(x)] α=0(4)

实际上,二者是一致的。即
∂ ∂ α J [ y ( x ) + α δ y ( x ) ] ∣ α = 0 = L [ y ( x ) , δ y ( x ) ] \dfrac{\partial}{\partial \alpha}J[y(x)+\alpha\delta y(x)]\Big|_{\alpha=0}=L[y(x),\delta y(x)] αJ[y(x)+αδy(x)] α=0=L[y(x),δy(x)]

根据式(4)利用函数的微分法则可方便地进行泛函变分的计算。


证明

泛函增量可以表示成:
Δ J = J [ y ( x ) + α δ y ( x ) ] − J [ y ( x ) ] = L [ y ( x ) , α δ y ( x ) ] + R [ y ( x ) , α δ y ( x ) ] \Delta J = J[y(x)+\alpha\delta y(x)] - J[y(x)] = L[y(x),\alpha\delta y(x)]+R[y(x),\alpha\delta y(x)] ΔJ=J[y(x)+αδy(x)]J[y(x)]=L[y(x),αδy(x)]+R[y(x),αδy(x)]

式中, L [ y ( x ) , α δ y ( x ) ] L[y(x),\alpha\delta y(x)] L[y(x),αδy(x)] 为关于 α δ y ( x ) \alpha\delta y(x) αδy(x) 的线性连续泛函,因此有
L [ y ( x ) , α δ y ( x ) ] = α L [ y ( x ) , δ y ( x ) ] L[y(x),\alpha\delta y(x)]=\alpha L[y(x),\delta y(x)] L[y(x),αδy(x)]=αL[y(x),δy(x)]

又由于 R [ y ( x ) , α δ y ( x ) ] R[y(x),\alpha\delta y(x)] R[y(x),αδy(x)] 是关于 α δ y ( x ) \alpha\delta y(x) αδy(x) 的高阶无穷小量,所以有:
lim ⁡ α → 0 R [ y ( x ) , α δ y ( x ) ] α = lim ⁡ α → 0 R [ y ( x ) , α δ y ( x ) ] α δ y ( x ) δ y ( x ) = 0 \lim_{\alpha\rightarrow0}\dfrac{R[y(x),\alpha\delta y(x)]}{\alpha}=\lim_{\alpha\rightarrow0}\dfrac{R[y(x),\alpha\delta y(x)]}{\alpha\delta y(x)}\delta y(x)=0 α0limαR[y(x),αδy(x)]=α0limαδy(x)R[y(x),αδy(x)]δy(x)=0

考虑到以上两点,便得到:
∂ ∂ α J [ y ( x ) + α δ y ( x ) ] ∣ α = 0 = lim ⁡ α → 0 Δ J α = lim ⁡ α → 0 J [ y ( x ) + α δ y ( x ) ] − J [ y ( x ) ] α = lim ⁡ α → 0 1 α { α L [ y ( x ) , δ y ( x ) ] } = L [ y ( x ) , δ y ( x ) ] \begin{aligned} &\dfrac{\partial}{\partial\alpha}J[y(x)+\alpha\delta y(x)]\Big|_{\alpha=0}=\lim_{\alpha\rightarrow0}\dfrac{\Delta J}{\alpha}\\[2ex] &=\lim_{\alpha\rightarrow0}\dfrac{J[y(x)+\alpha\delta y(x)]-J[y(x)]}{\alpha}\\[2ex] &=\lim_{\alpha\rightarrow0}\dfrac{1}{\alpha}\{\alpha L[y(x),\delta y(x)]\}\\[2ex] &=L[y(x),\delta y(x)] \end{aligned} αJ[y(x)+αδy(x)] α=0=α0limαΔJ=α0limαJ[y(x)+αδy(x)]J[y(x)]=α0limα1{αL[y(x),δy(x)]}=L[y(x),δy(x)]


例:求下列泛函的变分:
J = ∫ t 0 t f x 2 ( t ) d t J=\int_{t_0}^{t_f}x^2(t)\mathrm{d}t J=t0tfx2(t)dt

:由式(2)得
Δ J = ∫ t 0 t f [ x ( t ) + δ x ( t ) ] 2 d t − ∫ t 0 t f x 2 ( t ) d t = ∫ t 0 t f 2 x ( t ) δ x ( t ) d t + ∫ t 0 t f [ δ x ( t ) ] 2 d t \begin{aligned} \Delta J&=\int_{t_0}^{t_f}[x(t)+\delta x(t)]^2\mathrm{d}t-\int_{t_0}^{t_f}x^2(t)\mathrm{d}t\\[2ex] &=\int_{t_0}^{t_f}2x(t)\delta x(t)\mathrm{d}t + \int_{t_0}^{t_f}[\delta x(t)]^2\mathrm{d}t \end{aligned} ΔJ=t0tf[x(t)+δx(t)]2dtt0tfx2(t)dt=t0tf2x(t)δx(t)dt+t0tf[δx(t)]2dt

线性主部为: L [ x ( t ) , δ x ( t ) ] = ∫ t 0 t f 2 x ( t ) δ x ( t ) d t L[x(t),\delta x(t)]=\int_{t_0}^{t_f}2x(t)\delta x(t)\mathrm{d}t L[x(t),δx(t)]=t0tf2x(t)δx(t)dt

根据式(3)得变分:
δ J = ∫ t 0 t f 2 x ( t ) δ x ( t ) d t \delta J = \int_{t_0}^{t_f}2x(t)\delta x(t)\mathrm{d}t δJ=t0tf2x(t)δx(t)dt

另一方面,亦可由式(4)得:
δ J = ∂ ∂ α J [ y ( x ) + α δ y ( x ) ] ∣ α = 0 = ∫ t 0 t f ∂ ∂ α [ x ( t ) + α δ x ( t ) ] 2 d t ∣ α = 0 = ∫ t 0 t f 2 [ x ( t ) + α δ x ( t ) ] δ x ( t ) d t ∣ α = 0 = ∫ t 0 t f 2 x ( t ) δ x ( t ) d t \begin{aligned} \delta J &= \dfrac{\partial}{\partial\alpha}J[y(x)+\alpha\delta y(x)]\Big|_{\alpha=0}=\int_{t_0}^{t_f}\dfrac{\partial}{\partial\alpha}[x(t)+\alpha\delta x(t)]^2\mathrm{d}t\Big|_{\alpha=0}\\[2ex] &=\int_{t_0}^{t_f}2[x(t)+\alpha\delta x(t)]\delta x(t)\mathrm{d}t\Big|_{\alpha=0}=\int_{t_0}^{t_f}2x(t)\delta x(t)\mathrm{d}t \end{aligned} δJ=αJ[y(x)+αδy(x)] α=0=t0tfα[x(t)+αδx(t)]2dt α=0=t0tf2[x(t)+αδx(t)]δx(t)dt α=0=t0tf2x(t)δx(t)dt

可见,二者结果是一致的。

4、泛函极值定理

定理 \quad 若可微泛函 J [ y ( x ) ] J[y(x)] J[y(x)] y 0 ( x ) y_0(x) y0(x) 上达到极值,则在 y = y 0 ( x ) y=y_0(x) y=y0(x) 上得变分等于零。即
δ J = 0 \delta J=0 δJ=0

证明 \quad 已知 J [ y 0 ( x ) ] J[y_0(x)] J[y0(x)] 是泛函极值。考察对极值曲线 y 0 ( x ) y_0(x) y0(x) 或得增量 δ y \delta y δy 后得泛函,设宗量变分 δ y \delta y δy 任意取定不变,则 J [ y 0 ( x ) + α δ y ( x ) ] J[y_0(x)+\alpha\delta y(x)] J[y0(x)+αδy(x)] 便是实变量 α \alpha α 的函数,即
φ ( α ) = J [ y 0 ( x ) + α δ y ( x ) ] \varphi(\alpha)=J[y_0(x)+\alpha\delta y(x)] φ(α)=J[y0(x)+αδy(x)]

φ ( α ) \varphi(\alpha) φ(α) α \alpha α 求导数,并令 α = 0 \alpha=0 α=0,于是根据泛函变分的定义有
φ ˙ ( α ) ∣ α = 0 = ∂ ∂ α J [ y 0 ( x ) + α δ y ( x ) ] ∣ α = 0 = δ J [ y 0 ( x ) ] \dot{\varphi}(\alpha)\Big|_{\alpha=0}=\dfrac{\partial}{\partial\alpha}J[y_0(x)+\alpha\delta y(x)]\Big|_{\alpha=0}=\delta J[y_0(x)] φ˙(α) α=0=αJ[y0(x)+αδy(x)] α=0=δJ[y0(x)]

另一方面,对函数 φ ( α ) \varphi(\alpha) φ(α),当 α = 0 \alpha=0 α=0 时,有 φ ( 0 ) = J [ y 0 ( x ) ] \varphi(0)=J[y_0(x)] φ(0)=J[y0(x)] 已知是极值,根据函数极值定理必满足条件
φ ˙ ( α ) ∣ α = 0 = 0 \dot{\varphi}(\alpha)\Big|_{\alpha=0}=0 φ˙(α) α=0=0

因此, δ J [ y 0 ( x ) ] = 0 \delta J[y_0(x)]=0 δJ[y0(x)]=0 成立,定理得证。

上述概念同样适用于多元函数,多元函数取极值的必要条件仍然是
δ J = 0 \delta J = 0 δJ=0

  • 17
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值