1、直流磁路的计算
正问题:给定磁通量,计算所需要的励磁磁动势。
逆问题:给定励磁磁动势,计算磁通量。
下面说明正问题的计算方法
简单串联磁路 即不计漏磁影响,仅有一个磁回路,如图1所示。此时整个磁路中为统一磁通,但由于各段磁路的截面积不同,故应分段求出各段中的磁通密度 B k B_k Bk,再根据所用材料的磁化曲线,查出产生 B k B_k Bk所需的磁场强度 H k H_k Hk,最后求出各段和整个磁路所需的磁动势值。若磁路中含有气隙,由于气隙磁场的边缘效应,使气隙的有效面积 A δ 有效 A_{\delta有效} Aδ有效要比实际面积 A δ A_\delta Aδ大,故实际计算时要采用有效面积 A δ 有效 A_{\delta有效} Aδ有效。若气隙长度为 δ \delta δ,铁心的截面积为 a × b a\times b a×b,当 δ \delta δ比 a a a和 b b b小很多时,气隙的有效面积 A δ 有效 A_{\delta有效} Aδ有效将近似等于 A δ 有效 ≈ ( a + δ ) ( b + δ ) A_{\delta有效}\approx(a+\delta)(b+\delta) Aδ有效≈(a+δ)(b+δ)。
简单并联磁路 即考虑漏磁影响,或者磁回路有两个及两个以上分支的磁路。
2、直流电机的空载磁路和磁化曲线
空载磁路及其计算 直流电机的空载磁场是指,励磁绕组内通有直流励磁电流、电枢电流为0时,由励磁磁动势单独激励所产生的磁场。图2表示一台四极直流电机的空载磁场分布(由于对称,仅画出上半部分)。由于主磁极呈N、S、N、S交替排列,故整个电机的磁场分布与主极中心线对称。
由图2(a)可见,由励磁电流所激励的磁通,绝大部分经由主极铁心/气隙而到达电枢铁心,这部分磁通称为主磁通,用 ϕ 0 \phi_0 ϕ0表示。还有一部分称为主极漏磁通,用 ϕ f σ \phi_{f\sigma} ϕfσ表示。每个主磁极的总磁通 ϕ m = ϕ 0 + ϕ f σ \phi_m=\phi_0+\phi_{f\sigma} ϕm=ϕ0+ϕfσ,通常 ϕ f σ \phi_{f\sigma} ϕfσ约占 ϕ 0 \phi_0 ϕ0的 (15~20)%。
由图2(b)可见,空载时四极直流电机有四个并联的对称分支磁回路;根据所用材料和截面积的不同,每个回路由下列五段组成:①套装励磁绕组的主磁极铁心(m);②固定主磁极的定子磁轭(
j
j
j);③定、转子之间的气隙(
δ
\delta
δ);④电枢铁心周沿开槽而形成的电枢齿(
t
t
t);⑤电枢铁心(
c
c
c)。图2(b)表示空载磁路计算时各段的磁路长度。
磁回路选定后,根据各段内的磁通量和截面积,分}J}l算出各段的磁通密度
B
k
B_k
Bk,再由各段所用材料的从本磁化曲线,查得与
B
k
B_k
Bk相应的磁场强度
H
k
H_k
Hk,把
H
k
H_k
Hk乘上该段磁路的长度
l
k
l_k
lk得到
H
k
l
k
H_kl_k
Hklk,由此即可算出产生主磁通
ϕ
0
\phi_0
ϕ0时,整个闭合磁回路(一对极)所需的励磁磁动势
F
0
F_0
F0,
F
0
=
∑
k
=
1
5
H
k
l
k
F_0=\sum_{k=1}^5H_kl_k
F0=∑k=15Hklk。
直流电机的磁化曲线 分别算出产生不同主磁通时所需的励磁磁动势,即可得到直流电机的磁化曲线
ϕ
0
=
f
(
F
0
)
\phi_0=f(F_0)
ϕ0=f(F0)。因为励磁绕组的匝数一定,故磁化曲线也可表示为
ϕ
0
=
f
(
I
f
)
\phi_0=f(I_f)
ϕ0=f(If),如图3所示。
3、交流磁路的特点
交流磁路的激磁电流是交流,因此磁路中的磁动势及其所激励的磁通均随时间而交变,但每一瞬间仍和直流磁路一样,遵循磁路的基本定律。就瞬时值而言,通常情况下,
用与直流磁路相同的基本磁化曲线、磁路计算时,为表明磁路的工作点和饱和情况,磁通量和磁通密度****均用交流的幅值来表示,磁动势和磁场强度则用有效值表示。
交变磁通除了会引起铁心损耗之外,还有以下几个效应:
(1)磁通量随时间交变,必然会在激磁线圈内产生感应电动势。
(2)激磁电流
i
m
i_m
im与铁心中的主磁通
ϕ
m
\phi_m
ϕm之间存在一定的相位差,因此激磁电流
i
m
i_m
im中除磁化电流
i
μ
i_\mu
iμ外,还有与铁心损耗相对应的铁耗电流
i
F
e
i_{Fe}
iFe。
(3)磁路的非线性会导致激磁电流、磁通和电动势的波形产生畸变。