目录
💥1 概述
📚2 运行结果
🎉3 参考文献
👨💻4 Matlab代码
💥1 概述
目前,由OFDM技术与空时编码技术相融合而成的MIMO-OFDM技术已经引起了通信领域的广泛关注和研究.在无线通信系统中,MIMO-OFDM技术不仅能够有效地增强数据传输速率,增加系统传输容量,而且能有效地抑制多径衰落和干扰.信道估计问题是MIMO-OFDM系统的一项关键技术问题,因此,本论文针对MIMO-OFDM系统的信道估计问题展开研究.
📚2 运行结果
主函数部分代码:
clc; clear all; close all; global ofdm chan global xb %====================================================================== % Inputs %====================================================================== % Input parameters are (if not set the defalt value will be set) % ofdm.Nb = 1e2; % number of blocks % ofdm.Nt = 2; % number of transmit antennas % ofdm.Nr = 4; % number of receive antennas % ofdm.K = 128; % number of subcarriers % ofdm.G = 1/4; % Guard interval percentage % ofdm.Mod = 4; % QPSK Modulation % ofdm.PSpace = 1; % subcarrier space between two pilots % channel parameters % chan.SNR_dB = 15; % signal to noise ratio % chan.L = 6; % number of taps in each transmit-receive antenna % control parameters % ofdm.ifDemodulateData = 1; % (1,0) if 1, the code demodulates the transmitted via LS data and calculates the BER % ofdm.ifDisplayResults = 1; % (1,0) if 1, display the results in the command window %====================================================================== % Outputs %====================================================================== % The main outputs are listed below % chan.MSE_Theory % Minimum squared error of LSE channel estimation in theory % chan.MSE_Simulation % Minimum squared error of LSE channel estimation in simulations % ofdm.BER % Bit Error Rate if ofdm.ifDemodulateData = 1 SNR_dBV = 3:3:15; % vector of SNR values in dB SNR_dBVL = length(SNR_dBV); % length of SNR vector nMonteCarlo = 5;%e2; % number of Monte Carlo to find the value of each point in the figure ofdmIn.Nt = 2; % number of transmit antennas ofdmIn.Nr = 3; % number of recieve antennas ofdmIn.ifDisplayResults = 0; % turn off the display % other parameters of ofdm can also be set. see help of MIMO_OFDM_LSE_CHAN_EST %% Outputs MSE_CHAN_SIM = zeros(nMonteCarlo,SNR_dBVL); % MSE of LSE channel estimation in simulation MSE_CHAN_THR = zeros(nMonteCarlo,SNR_dBVL); % MSE of LSE channel estimation in theory MSE_CHAN_BER = zeros(nMonteCarlo,SNR_dBVL); % BER of the MIMO OFDM with LSE channel estimation %% Parameters % system parameters (independent) ofdm.Nb = 1e2; % number of blocks ofdm.Nt = 2; % number of transmit antenna ofdm.Nr = 4; % number of receive antenna ofdm.K = 128; % number of subcarriers ofdm.G = 1/4; % Guard interval percentage ofdm.Mod = 4; % QPSK Modulation ofdm.PSpace = 1; % pilot space between two pilots % channel parameters chan.SNR_dB = 15; % signal to noise ratio chan.L = 6; % number of channel taps between each transmit-receive antenna % control parameters ofdm.ifDemodulateData = 1; % (1,0) if 1, the code demodulates the transmitted data via LS algorithm, and calculates the BER ofdm.ifDisplayResults = 1; % (1,0) if 1, displays the results in the command window % dependent parameters ofdm.PPos = 1:(ofdm.PSpace+1):ofdm.K; % OFDM pilot positionss ofdm.PL = length(ofdm.PPos); % Length of pilot subcarriers ofdm.DPos = setxor(1:ofdm.K,ofdm.PPos); % OFDM data positions ofdm.DL = length(ofdm.DPos); % Length of data subcarriers ofdm.BER = 0; % set the BER to zero chan.sigma = sqrt(10^(-0.1*chan.SNR_dB)); % noise power % normalization of the energy for the constelation temp = 0:ofdm.Mod-1; % possible symbols temp = qammod(temp,ofdm.Mod); % modulated symbols temp = abs(temp).^2; % power of each point in the constellation temp = mean(temp); % average energy of the constellation ofdm.ModNorm = 1/sqrt(temp); % normaliztion factor %% Data generation % symbol generation ofdm.d = randi(ofdm.Mod,ofdm.DL,ofdm.Nb,ofdm.Nt)-1; % generation of a DL by nB by Nt matrix of data symbols figure, stem(ofdm.d(:,:,1)) xlabel('Sample') ylabel('Data Gen') %% data Modulation ofdm.dMod = zeros(ofdm.K,ofdm.Nb,ofdm.Nt); % memory allocation for the ofdm blocks transmitted from each Tx antenna if ofdm.DL > 0 for nt = 1 : ofdm.Nt ofdm.dMod(ofdm.DPos,:,nt) = ofdm.ModNorm*qammod(ofdm.d(:,:,nt),ofdm.Mod); end end
🎉3 参考文献
[1]曹松景. MIMO-OFDM系统中信道估计方法的研究[D]. 重庆大学.
点击文章左下角【阅读全文】
部分理论引用网络文献,若有侵权联系博主删除。