基于Matlab模拟六自由度Stewart并联机器人运动学逆解

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

🔥 内容介绍

在现代工业和科学领域中,机器人技术的发展已经取得了巨大的进步,为生产和研究提供了许多便利。其中,六自由度Stewart并联机器人是一种广泛应用于各种领域的机器人系统。它具有高精度、高刚度和高可靠性的特点,被广泛应用于飞行模拟器、手术机器人和运动仿真等领域。

然而,要使Stewart并联机器人能够实现复杂的运动任务,我们需要了解其运动学逆解。运动学逆解是指根据机器人末端执行器的位置和姿态,计算出各个关节的角度和长度。这对于控制机器人的运动非常重要,因为它可以帮助我们确定机器人各个关节的运动范围和工作空间。

要理解六自由度Stewart并联机器人的运动学逆解,我们首先需要了解其结构和工作原理。Stewart并联机器人由一个固定底座和一个可移动平台组成,平台上安装有六个执行器,每个执行器由一个伺服电机和一个球铰链机构组成。这种结构使得机器人可以在六个自由度上进行运动,包括平移和旋转。

为了计算出机器人的运动学逆解,我们需要使用一些数学模型和算法。其中最常用的方法是使用正运动学方程和雅可比矩阵。正运动学方程可以将关节角度和长度与末端执行器的位置和姿态相联系,而雅可比矩阵则可以帮助我们计算出关节角度和长度的变化对末端执行器位置和姿态的影响。

在实际应用中,我们通常会使用数值方法来求解运动学逆解。这些方法包括牛顿-拉夫逊法、雅可比转置法和雅可比伪逆法等。这些方法可以通过迭代计算来逐步逼近真实解,从而得到机器人的关节角度和长度。

然而,六自由度Stewart并联机器人的运动学逆解并不是一个简单的问题。由于机器人的结构复杂性和运动学方程的非线性性,求解过程可能会非常复杂和耗时。因此,研究人员一直在努力寻找更高效和精确的算法来解决这个问题。

总结起来,六自由度Stewart并联机器人的运动学逆解是一个复杂而关键的问题。它对于机器人的运动控制和路径规划至关重要。虽然目前仍存在一些挑战和困难,但随着技术的不断进步和研究的深入,相信我们能够找到更好的解决方案,推动机器人技术的发展和应用。

📣 部分代码

clcclear allclose alltic%-----------------------初始位置的位恣-------------------------------------XP = 0;    %  动平台  相对  静平台  的初始位置坐标YP = 0;ZP = 857.5562;%-------------------------动平台的位恣-------------------------------------X =0;    % 相对初始位置运动的坐标Y =0;Z = 0;ROLL = 0;    % 相对静平台的恣态PITCH =0;YAW = 0;P = [ X+XP; Y+YP; Z+ZP ]; %  动平台圆心点  相对  静平台  的坐标%--------------------------平台的基本尺寸----------------------------------br2 = TransM * bR2 + P;LenL6 = norm(L6);toc %  显示计算时间%-------------------------画出3D图-----------------------------------------h=gca; %  把原来的图删掉,免得新的图和旧的图相互重叠delete(h);figure(1); %  把 hold on 开启hold on;view([1,1,1]); %  设定3D图的观察视角axis equal; %  XYZ轴显示比例相等plot3( [0,300], [0,0],[0,0],'-b', 'LineWidth', 1 );% 在图中画出X轴,方便观察plot3( 300, 0, 0, '>b' );plot3( [0,0],[0,300], [0,0], '-r', 'LineWidth', 1 );% 在图中画出Y轴,方便观察plot3( 0,300, 0, '>r' );plot3( [0,0], [0,0], [0,300], '-k', 'LineWidth', 1 );% 在图中画出Z轴,方便观察plot3( 0, 0, 300, '>k' );PBx0 = TransM * [ 0; 0; 0 ] + P;PBx1 = TransM * [ 0+100; 0; 0 ] + P;PBy0 = TransM * [ 0;0; 0 ] + P;PBy1 = TransM * [ 0; 0+100; 0] + P;PBz0 = TransM * [ 0; 0;0] + P;PBz1 = TransM * [ 0; 0;0+100 ] + P;plot3( [PBx0(1),PBx1(1)], [PBx0(2),PBx1(2)], [PBx0(3),PBx1(3)], '-g', 'LineWidth', 1 );% 在图中画出X轴,方便观察plot3( [PBy0(1),PBy1(1)], [PBy0(2),PBy1(2)], [PBy0(3),PBy1(3)], '-r', 'LineWidth', 1 );% 在图中画出Y轴,方便观察plot3( [PBz0(1),PBz1(1)], [PBz0(2),PBz1(2)], [PBz0(3),PBz1(3)], '-k', 'LineWidth', 1 );% 在图中画出Z轴,方便观察%  动平台用红色的图块,静平台用蓝色的图块patch( [Br1(1),Br2(1),Br3(1),Br4(1),Br5(1),Br6(1)], [Br1(2),Br2(2),Br3(2),Br4(2),Br5(2),Br6(2)], [Br1(3),Br2(3),Br3(3),Br4(3),Br5(3),Br6(3)], 'c' );patch( [br1(1),br2(1),br3(1),br4(1),br5(1),br6(1)], [br1(2),br2(2),br3(2),br4(2),br5(2),br6(2)], [br1(3),br2(3),br3(3),br4(3),br5(3),br6(3)], 'y');plot3( br1(1),br1(2),br1(3), '.m', 'MarkerSize', 30); %  画出动平台上的6个铰点plot3( br2(1),br2(2),br2(3), '.m', 'MarkerSize', 30);plot3( br3(1),br3(2),br3(3), '.m', 'MarkerSize', 30);plot3( br4(1),br4(2),br4(3), '.m', 'MarkerSize', 30);plot3( br5(1),br5(2),br5(3), '.m', 'MarkerSize', 30);plot3( br6(1),br6(2),br6(3), '.m', 'MarkerSize', 30);plot3( P(1), P(2), P(3), '.k', 'MarkerSize',10); %  画出动、静平台的圆心,方便观察plot3( 0, 0, 0, '.k', 'MarkerSize',10);plot3( [br1(1),Br1(1)], [br1(2),Br1(2)], [br1(3),Br1(3)], '-k', 'LineWidth', 2 ); % 动、静平台的铰点连接,也就是连杆plot3( [br2(1),Br2(1)], [br2(2),Br2(2)], [br2(3),Br2(3)], '-k', 'LineWidth', 2 );plot3( [br3(1),Br3(1)], [br3(2),Br3(2)], [br3(3),Br3(3)], '-k', 'LineWidth', 2 );plot3( [br4(1),Br4(1)], [br4(2),Br4(2)], [br4(3),Br4(3)], '-k', 'LineWidth', 2 );plot3( [br5(1),Br5(1)], [br5(2),Br5(2)], [br5(3),Br5(3)], '-k', 'LineWidth', 2 );plot3( [br6(1),Br6(1)], [br6(2),Br6(2)], [br6(3),Br6(3)], '-k', 'LineWidth', 2 );%-------------------------设置3D图的一些格式,方便观察---------------------xlim([ -1000,1000 ]); %  X轴固定显示范围ylim([ -1000,1000 ]);%  Y轴固定显示范围zlim([ 0,1500 ]); %  Z轴固定显示范围xlabel('X-axis / mm');%  X轴标识ylabel('Y-axis / mm');%  Y轴标识zlabel('Z-axis / mm');%  Z轴标识str = ['LenL1 = ',num2str(LenL1)];%  在图上显示每条连杆的长度,mm为单位text(-400,300,1500,[str,' mm']);str = ['LenL2 = ',num2str(LenL2)];text(-400,300,1400,[str,' mm']);str = ['LenL3 = ',num2str(LenL3)];text(-400,300,1300,[str,' mm']);str = ['LenL4 = ',num2str(LenL4)];text(-400,300,1200,[str,' mm']);str = ['LenL5 = ',num2str(LenL5)];text(-400,300,1100,[str,' mm']);str = ['LenL6 = ',num2str(LenL6)];text(-400,300,1000,[str,' mm']);text( Br1(1), Br1(2)-50,'1' );%  在静平台的铰点旁边,显示连杆的序号text( Br2(1)+50, Br2(2)-50,'2' );text( Br3(1)+50, Br3(2)-50,'3' );text( Br4(1)+50, Br4(2)+50,'4' );text( Br5(1)+50, Br5(2)+50,'5' );text( Br6(1)-50, Br6(2)-50,'6' ); 

⛳️ 运行结果

🔗 参考文献

[1] 刘得军,王娟,王世营,等.基于BP算法的六自由度并联机器人正运动学求解[J].组合机床与自动化加工技术, 2006(1):4.DOI:10.3969/j.issn.1001-2265.2006.01.011.

[2] 潘芳伟,段志善,贺利乐,et al.基于遗传算法的新型六自由度并联机器人运动学分析[J].机械科学与技术, 2007, 26(6):5.DOI:10.3321/j.issn:1003-8728.2007.06.022.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

自由度Stewart并联机器人是一种具有个独立自由度机器人系统,由一个固定底座和一个移动平台组成,通过个伺服驱动的液压缸连接底座和平台,可以实现平移和旋转等各种自由度的运动。 在Matlab中可以使用Simulink和Simscape工具箱进行自由度Stewart并联机器人的仿真。首先,通过Simulink构建个伺服系统分别控制个液压缸的运动,设置液压缸的位移作为输入,输出平台的位姿信息。根据机器人运动学模型,可以将平台的位姿信息转换为底座的位姿信息,并通过图像显示器显示机器人的运动轨迹。 为了实现仿真,需要创建并联机器人的模型,将其物理特性建模并导入到Simscape环境中。然后,使用控制器模块实现机器人的运动和姿态控制。可以选择PID控制器或模糊控制器等方法进行控制算法的设计。在仿真过程中,根据输入的控制信号,模拟机器人的运动,观察机器人的运动轨迹和姿态变化。 通过Matlab仿真,可以对自由度Stewart并联机器人的运动性能进行评估和优化设计。可以调整控制算法的参数,改变机器人的运动方式,以满足特定的任务需求。同时,还可以通过仿真数据进行后续控制器设计和路径规划等工作。 总之,利用Matlab的Simulink和Simscape工具箱进行自由度Stewart并联机器人的仿真,可以帮助工程师和研究人员更好地理解并联机器人的运动特性,并优化其控制算法,提高机器人的性能和运动精度。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值