【多智能体】分布式多智能体平均共识附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

平均共识(Average Consensus)作为分布式控制领域的核心问题之一,近年来在多智能体系统(Multi-Agent Systems, MAS)中受到了广泛关注。它指的是在一个由多个智能体组成的网络中,每个智能体初始拥有一组数值,通过智能体之间的信息交换和迭代更新,最终使所有智能体的值收敛到一个共同的平均值。这一看似简单的问题,却蕴含着深刻的理论基础和广泛的应用前景,例如集群控制、传感器融合、分布式优化、以及机器人协作等领域。本文将深入探讨分布式多智能体平均共识的挑战,梳理主流的共识算法,并展望其未来的发展方向。

分布式多智能体平均共识的挑战

分布式平均共识的实现并非易事,尤其是在复杂和动态的网络环境中,它面临着诸多挑战:

  • 网络拓扑结构的不确定性:

     多智能体系统通常运行在动态变化的通信网络中。网络的拓扑结构可能随时发生改变,例如节点的加入与离开,通信链路的建立与断开。这种不确定性要求共识算法具有鲁棒性,能够适应网络拓扑的变化,保证共识的最终达成。

  • 通信约束与延迟:

     在现实场景中,智能体之间的通信往往受到带宽、能量等资源的限制。有限的通信容量限制了智能体之间交换信息的量,进而影响了共识算法的收敛速度。此外,通信延迟也会对共识性能产生不利影响,甚至导致系统的不稳定。

  • 非线性动力学特性:

     许多智能体系统具有复杂的非线性动力学特性,例如机器人的运动模型、无人机的飞行轨迹等。这些非线性因素使得共识算法的设计更加困难,需要考虑动力学模型对共识过程的影响。

  • 异构性:

     实际应用中的多智能体系统往往由具有不同能力和特性的智能体组成。例如,不同类型的传感器具有不同的测量精度,不同计算能力的智能体具有不同的处理速度。这种异构性要求共识算法能够灵活地适应不同智能体的差异,实现有效的协同。

  • 恶意攻击与故障:

     在开放的网络环境中,多智能体系统可能面临恶意攻击,例如虚假信息注入、拒绝服务攻击等。此外,智能体自身也可能发生故障,导致数据传输错误或行为异常。这些恶意攻击和故障会对共识结果产生严重影响,要求共识算法具有容错能力,能够抵抗攻击和故障的干扰。

主流的平均共识算法

针对上述挑战,研究者们提出了各种各样的平均共识算法,它们各有优缺点,适用于不同的应用场景。以下介绍几种主流的算法:

  • 线性迭代算法: 这是最基础也是最常用的共识算法。每个智能体通过加权平均其邻居节点的值来更新自身的值。其核心公式为:

    • x<sub>i</sub>(k+1) = Σ<sub>j∈Ni</sub> w<sub>ij</sub> x<sub>j</sub>(k)

    • 其中,x<sub>i</sub>(k)表示智能体i在第k次迭代时的值,N<sub>i</sub>表示智能体i的邻居节点集合,w<sub>ij</sub>表示智能体i和j之间的权重。

    • 线性迭代算法的收敛性依赖于权重矩阵的设计。通常,要求权重矩阵是随机矩阵,且与网络拓扑结构相关联。常见的权重设计方法包括Metropolis权重、最大度权重等。

    • 线性迭代算法的优点是实现简单,易于分析。但其收敛速度相对较慢,且对网络拓扑结构的变化比较敏感。

  • 基于梯度下降的共识算法: 这类算法将平均共识问题转化为一个优化问题,通过梯度下降法来求解。其核心思想是构造一个全局代价函数,该函数的最小值对应于所有智能体值的平均值。每个智能体通过局部梯度信息来更新自身的值,最终达到共识。

    • 基于梯度下降的共识算法具有较快的收敛速度,且可以处理非凸代价函数。但其需要计算梯度信息,计算复杂度较高。

  • 有限时间共识算法: 与渐近收敛的线性迭代算法不同,有限时间共识算法能够在有限时间内达到共识。这类算法通常采用非线性控制策略,利用滑模控制、终端滑模控制等方法来实现。

    • 有限时间共识算法的优点是收敛速度快,对初始值不敏感。但其设计较为复杂,且容易产生抖振现象。

  • 事件触发共识算法: 为了减少通信频率,研究者们提出了事件触发共识算法。在这种算法中,智能体不是周期性地交换信息,而是根据一定的事件触发条件来决定何时通信。

    • 事件触发共识算法可以有效地降低通信负担,但其设计较为复杂,需要仔细选择事件触发条件。

  • 弹性平均共识(Resilient Average Consensus): 为了应对恶意攻击和故障,研究者们提出了弹性平均共识算法。这类算法通过对接收到的信息进行过滤和验证,来去除恶意数据,保证共识的正确性。

    • 常用的弹性平均共识算法包括中值法、一致性投票法等。

未来发展方向

尽管多智能体平均共识已经取得了显著进展,但仍然存在许多挑战性的问题,未来的研究方向主要集中在以下几个方面:

  • 大规模多智能体系统的可扩展性:

     随着智能体数量的增加,共识算法的计算和通信复杂度也会迅速增长。如何设计可扩展的共识算法,使其能够高效地处理大规模多智能体系统,是一个重要的研究方向。

  • 异构多智能体系统的共识:

     如何设计能够适应不同智能体能力和特性的共识算法,实现异构多智能体系统的协同,是一个极具挑战性的问题。

  • 对抗环境下的鲁棒共识:

     如何设计具有容错能力和抗攻击能力的共识算法,保证多智能体系统在恶意攻击和故障干扰下的稳定性和可靠性,是一个重要的研究方向。

  • 基于机器学习的共识:

     利用机器学习方法来优化共识算法的参数,提高共识性能,是一个新兴的研究方向。例如,可以使用强化学习来学习最优的权重矩阵,或者使用深度学习来预测网络拓扑结构的变化。

  • 与其他技术的融合:

     将平均共识与其他技术相结合,例如边缘计算、区块链等,可以拓展其应用范围,解决实际问题。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值