✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
无人水面飞行器(USV)作为一种新兴的智能化海上平台,在海洋环境监测、搜寻救援、水文调查以及港口巡逻等领域展现出巨大的应用潜力。实现USV的自主航行,特别是高精度、高鲁棒性的轨迹跟踪,是确保其完成任务的关键。然而,USV在复杂多变的水面环境下,面临着非线性、时变性以及外部扰动(如风、浪、流)的影响,传统的控制方法难以满足高精度的轨迹跟踪需求。模型预测控制(MPC)算法凭借其优越的预测能力、显性约束处理能力以及闭环优化特性,为解决USV轨迹跟踪问题提供了一种极具前景的方案。本文将深入探讨基于MPC算法的自动驾驶USV轨迹跟踪技术,详细阐述其基本原理、模型构建、算法设计以及优化策略,并展望其未来的发展方向。
一、模型预测控制算法的基本原理
模型预测控制(MPC)是一种先进的控制策略,其核心思想是基于系统模型,在有限时间范围内预测系统未来的行为,通过优化算法求解一组最优控制序列,并将序列中的第一个控制量作用于实际系统。MPC的控制流程通常包括以下三个关键环节:
-
预测模型(Prediction Model): 预测模型是MPC算法的基础,用于描述系统未来的动态行为。它通常采用数学模型,例如线性模型、非线性模型或者混合模型,来模拟系统的状态演变过程。模型的准确性直接影响到预测的精度和控制效果。对于USV而言,常用的预测模型包括基于牛顿力学原理建立的运动学模型和动力学模型。
-
目标函数(Objective Function): 目标函数用于量化控制目标,通常包含跟踪误差和控制输入两部分。跟踪误差反映了实际轨迹与期望轨迹的偏差,控制输入则反映了控制力的大小。目标函数的构建需要权衡跟踪精度和控制能量消耗,通常采用加权平方和的形式进行表示。例如,对于USV轨迹跟踪问题,目标函数可以设计为最小化USV的位置和航向角与期望值的偏差,同时最小化推进器和舵机的控制输入。
-
约束条件(Constraints): 约束条件用于限制系统的状态和控制输入,保证系统的安全性和可行性。常见的约束条件包括USV的速度限制、舵角限制、推进器力矩限制以及避碰约束等。这些约束条件可以显性地融入到优化问题中,确保生成的控制序列不会导致系统违反安全规定。
MPC算法的执行过程是一个滚动优化的过程。在每个采样时刻,MPC控制器根据当前系统的状态,利用预测模型预测未来一段时间内的系统行为,通过优化算法求解最优控制序列。然后,将序列中的第一个控制量作用于实际系统,并更新系统的状态。在下一个采样时刻,重复上述过程,滚动地进行优化和控制。
二、USV模型构建
构建准确且适用于MPC控制的USV模型至关重要。考虑到计算复杂度和控制性能,通常采用简化的运动学或动力学模型。以下分别介绍两种常用的模型:
- 运动学模型:
运动学模型描述了USV的位置和航向角随时间的变化关系,忽略了惯性力和阻尼力的影响。通常采用三自由度(3-DOF)模型,即纵荡(Surge)、横荡(Sway)和艏摇(Yaw)三个方向的运动。其状态变量包括位置坐标(x, y)和航向角(ψ),控制输入为纵向速度(u)和横向角速度(r)。运动学模型的数学表达式如下:
scss
ẋ = u cos(ψ) - v sin(ψ)
ẏ = u sin(ψ) + v cos(ψ)
ψ̇ = r
其中,v表示横向速度,可以根据横向力平衡方程进行估计。运动学模型结构简单,计算效率高,适用于对实时性要求较高的场合。
- 动力学模型:
动力学模型则考虑了惯性力、科里奥利力、向心力、阻尼力以及推进器的作用力等因素,能够更准确地描述USV的运动状态。动力学模型同样采用3-DOF模型,其状态变量包括纵向速度(u)、横向速度(v)和横向角速度(r),控制输入为纵向推力(T)和舵角(δ)。动力学模型的数学表达式如下:
scss
Mv̇ + C(v)v + D(v)v = τ
其中,M为惯性矩阵,C(v)为科里奥利力和向心力矩阵,D(v)为阻尼矩阵,v为速度向量[u, v, r]<sup>T</sup>,τ为作用力矩向量[T, 0, N]<sup>T</sup>,N为横向力矩,与舵角δ相关。动力学模型精度较高,但计算复杂度也相应增加,适用于对控制精度要求较高的场合。
⛳️ 运行结果
🔗 参考文献
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇